Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Loss Of Vglut3 Produces Circadian-Dependent Hyperdopaminergia And Ameliorates Motor Dysfunction And L-Dopa-Mediated Dyskinesias In A Model Of Parkinson's Disease., Christopher B. Divito, Kathy Steece-Collier, Daniel T. Case, Sean-Paul G. Williams, Jennifer A. Stancati, Lianteng Zhi, Maria E. Rubio, Caryl E. Sortwell, Timothy J. Collier, David Sulzer, Robert H. Edwards, Hui Zhang, Rebecca P. Seal Nov 2015

Loss Of Vglut3 Produces Circadian-Dependent Hyperdopaminergia And Ameliorates Motor Dysfunction And L-Dopa-Mediated Dyskinesias In A Model Of Parkinson's Disease., Christopher B. Divito, Kathy Steece-Collier, Daniel T. Case, Sean-Paul G. Williams, Jennifer A. Stancati, Lianteng Zhi, Maria E. Rubio, Caryl E. Sortwell, Timothy J. Collier, David Sulzer, Robert H. Edwards, Hui Zhang, Rebecca P. Seal

Department of Neuroscience Faculty Papers

UNLABELLED: The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion …


Human Ips Cell-Derived Astrocyte Transplants Preserve Respiratory Function After Spinal Cord Injury., Ke Li, Elham Javed, Daniel Scura, Tamara J. Hala, Suneil Seetharam, Aditi Falnikar, Jean-Philippe Richard, Ashley Chorath, Nicholas J. Maragakis, Megan C. Wright, Angelo C. Lepore Sep 2015

Human Ips Cell-Derived Astrocyte Transplants Preserve Respiratory Function After Spinal Cord Injury., Ke Li, Elham Javed, Daniel Scura, Tamara J. Hala, Suneil Seetharam, Aditi Falnikar, Jean-Philippe Richard, Ashley Chorath, Nicholas J. Maragakis, Megan C. Wright, Angelo C. Lepore

Department of Neuroscience Faculty Papers

Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express …


Targeting Human Central Nervous System Protein Kinases: An Isoform Selective P38Αmapk Inhibitor That Attenuates Disease Progression In Alzheimer's Disease Mouse Models, Saktimayee M. Roy, Valerie L. Grum-Tokars, James P. Schavocky, Faisal Saeed, Agnieszka Staniszewski, Andrew F. Teich, Ottavio Arancio, Adam D. Bachstetter, Scott J. Webster, Linda J. Van Eldik, George Minasov, Wayne F. Anderson, Jeffrey C. Pelletier, D. Martin Watterson Apr 2015

Targeting Human Central Nervous System Protein Kinases: An Isoform Selective P38Αmapk Inhibitor That Attenuates Disease Progression In Alzheimer's Disease Mouse Models, Saktimayee M. Roy, Valerie L. Grum-Tokars, James P. Schavocky, Faisal Saeed, Agnieszka Staniszewski, Andrew F. Teich, Ottavio Arancio, Adam D. Bachstetter, Scott J. Webster, Linda J. Van Eldik, George Minasov, Wayne F. Anderson, Jeffrey C. Pelletier, D. Martin Watterson

Spinal Cord and Brain Injury Research Center Faculty Publications

The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, …