Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Animals

Toxicology and Cancer Biology Faculty Publications

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Latexin Sensitizes Leukemogenic Cells To Gamma-Irradiation-Induced Cell-Cycle Arrest And Cell Death Through Rps3 Pathway, Y. You, R. Wen, R. Pathak, A. Li, W. Li, D. St. Clair, M. Hauer-Jensen, D. Zhou, Ying Liang Oct 2014

Latexin Sensitizes Leukemogenic Cells To Gamma-Irradiation-Induced Cell-Cycle Arrest And Cell Death Through Rps3 Pathway, Y. You, R. Wen, R. Pathak, A. Li, W. Li, D. St. Clair, M. Hauer-Jensen, D. Zhou, Ying Liang

Toxicology and Cancer Biology Faculty Publications

Leukemia is a leading cause of cancer death. Recently, the latexin (Lxn) gene was identified as a potential tumor suppressor in several types of solid tumors and lymphoma, and Lxn expression was found to be absent or downregulated in leukemic cells. Whether Lxn functions as a tumor suppressor in leukemia and what molecular and cellular mechanisms are involved are unknown. In this study, the myeloid leukemogenic FDC-P1 cell line was used as a model system and Lxn was ectopically expressed in these cells. Using the protein pull-down assay and mass spectrometry, ribosomal protein subunit 3 (Rps3) was identified as a …


Redox Proteomic Identification Of Hne-Bound Mitochondrial Proteins In Cardiac Tissues Reveals A Systemic Effect On Energy Metabolism After Doxorubicin Treatment, Y. Zhao, Sumitra Miriyala, L. Miao, Mihail I. Mitov, David M. Schnell, Sanjit Kumar Dhar, J. Cai, J. B. Klein, Rukhsana Sultana, D. Allan Butterfield, Mary Vore, I. Batinic-Haberle, Subbarao Bondada, Daret K. St. Clair Jul 2014

Redox Proteomic Identification Of Hne-Bound Mitochondrial Proteins In Cardiac Tissues Reveals A Systemic Effect On Energy Metabolism After Doxorubicin Treatment, Y. Zhao, Sumitra Miriyala, L. Miao, Mihail I. Mitov, David M. Schnell, Sanjit Kumar Dhar, J. Cai, J. B. Klein, Rukhsana Sultana, D. Allan Butterfield, Mary Vore, I. Batinic-Haberle, Subbarao Bondada, Daret K. St. Clair

Toxicology and Cancer Biology Faculty Publications

Doxorubicin (DOX), one of the most effective anticancer drugs, is known to generate progressive cardiac damage, which is due, in part, to DOX-induced reactive oxygen species (ROS). The elevated ROS often induce oxidative protein modifications that result in alteration of protein functions. This study demonstrates that the level of proteins adducted by 4-hydroxy-2-nonenal (HNE), a lipid peroxidation product, is significantly increased in mouse heart mitochondria after DOX treatment. A redox proteomics method involving two-dimensional electrophoresis followed by mass spectrometry and investigation of protein databases identified several HNE-modified mitochondrial proteins, which were verified by HNE-specific immunoprecipitation in cardiac mitochondria from the …


Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis And Tumor Progression In Mouse Models Of Lung Cancer And Impacts Tumor-Initiating Cells, Han Xie, Jun-Ichi Hanai, Jian-Guo Ren, Lev Kats, Kerri Burgess, Parul Bhargava, Sabina Signoretti, Julia Billiard, Kevin J. Duffy, Aaron Grant, Xiaoen Wang, Pawel Lorkiewicz, Sabrina Schatzman, Michael Bousamra, Andrew N. Lane, Richard M. Higashi, Teresa W-M Fan, Pier Paolo Pandolfi, Vikas P. Sukhatme, Pankaj Seth May 2014

Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis And Tumor Progression In Mouse Models Of Lung Cancer And Impacts Tumor-Initiating Cells, Han Xie, Jun-Ichi Hanai, Jian-Guo Ren, Lev Kats, Kerri Burgess, Parul Bhargava, Sabina Signoretti, Julia Billiard, Kevin J. Duffy, Aaron Grant, Xiaoen Wang, Pawel Lorkiewicz, Sabrina Schatzman, Michael Bousamra, Andrew N. Lane, Richard M. Higashi, Teresa W-M Fan, Pier Paolo Pandolfi, Vikas P. Sukhatme, Pankaj Seth

Toxicology and Cancer Biology Faculty Publications

The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the interconversion of pyruvate and lactate, is upregulated in human cancers, and is associated with aggressive tumor outcomes. Here we use an inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by reactivation of mitochondrial function in vitro, but not in vivo …