Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Intestinal Gucy2c Prevents Tgf-Β Secretion Coordinating Desmoplasia And Hyperproliferation In Colorectal Cancer., Ahmara V Gibbons, Jieru Egeria Lin, Gilbert Won Kim, Glen P Marszalowicz, Peng Li, Brian Arthur Stoecker, Erik S Blomain, Satish Rattan, Adam E. Snook, Stephanie Schulz, Scott A Waldman Nov 2013

Intestinal Gucy2c Prevents Tgf-Β Secretion Coordinating Desmoplasia And Hyperproliferation In Colorectal Cancer., Ahmara V Gibbons, Jieru Egeria Lin, Gilbert Won Kim, Glen P Marszalowicz, Peng Li, Brian Arthur Stoecker, Erik S Blomain, Satish Rattan, Adam E. Snook, Stephanie Schulz, Scott A Waldman

Department of Pharmacology and Experimental Therapeutics Faculty Papers

Tumorigenesis is a multistep process that reflects intimate reciprocal interactions between epithelia and underlying stroma. However, tumor-initiating mechanisms coordinating transformation of both epithelial and stromal components are not defined. In humans and mice, initiation of colorectal cancer is universally associated with loss of guanylin and uroguanylin, the endogenous ligands for the tumor suppressor guanylyl cyclase C (GUCY2C), disrupting a network of homeostatic mechanisms along the crypt-surface axis. Here, we reveal that silencing GUCY2C in human colon cancer cells increases Akt-dependent TGF-β secretion, activating fibroblasts through TGF-β type I receptors and Smad3 phosphorylation. In turn, activating TGF-β signaling induces fibroblasts to …


Lineage-Specific T-Cell Responses To Cancer Mucosa Antigen Oppose Systemic Metastases Without Mucosal Inflammatory Disease., Adam Snook, Peng Li, Benjamin J Stafford, Elizabeth J Faul, Lan Huang, Ruth C Birbe, Alessandro Bombonati, Stephanie Schulz, Matthias Schnell, Laurence Eisenlohr, Scott Waldman Aug 2013

Lineage-Specific T-Cell Responses To Cancer Mucosa Antigen Oppose Systemic Metastases Without Mucosal Inflammatory Disease., Adam Snook, Peng Li, Benjamin J Stafford, Elizabeth J Faul, Lan Huang, Ruth C Birbe, Alessandro Bombonati, Stephanie Schulz, Matthias Schnell, Laurence Eisenlohr, Scott Waldman

Adam E Snook

Cancer mucosa antigens are emerging as a new category of self-antigens expressed normally in immunologically privileged mucosal compartments and universally by their derivative tumors. These antigens leverage the established immunologic partitioning of systemic and mucosal compartments, limiting tolerance opposing systemic antitumor efficacy. An unresolved issue surrounding self-antigens as immunotherapeutic targets is autoimmunity following systemic immunization. In the context of cancer mucosa antigens, immune effectors to self-antigens risk amplifying mucosal inflammatory disease promoting carcinogenesis. Here, we examined the relationship between immunotherapy for systemic colon cancer metastases targeting the intestinal cancer mucosa antigen guanylyl cyclase C (GCC) and its effect on inflammatory …


Gucy2c Opposes Systemic Genotoxic Tumorigenesis By Regulating Akt-Dependent Intestinal Barrier Integrity, Jieru Egeria Lin, Adam Eugene Snook, Peng Li, Brian Arthur Stoecker, Gilbert Won Kim, Michael Sullivan Magee, Alex Vladimir Mejia Garcia, Michael Anthony Valentino, Terry Hyslop, Stephanie Schulz, Scott Arthur Waldman Aug 2013

Gucy2c Opposes Systemic Genotoxic Tumorigenesis By Regulating Akt-Dependent Intestinal Barrier Integrity, Jieru Egeria Lin, Adam Eugene Snook, Peng Li, Brian Arthur Stoecker, Gilbert Won Kim, Michael Sullivan Magee, Alex Vladimir Mejia Garcia, Michael Anthony Valentino, Terry Hyslop, Stephanie Schulz, Scott Arthur Waldman

Adam E Snook

The barrier separating mucosal and systemic compartments comprises epithelial cells, annealed by tight junctions, limiting permeability. GUCY2C recently emerged as an intestinal tumor suppressor coordinating AKT1-dependent crypt-villus homeostasis. Here, the contribution of GUCY2C to barrier integrity opposing colitis and systemic tumorigenesis is defined. Mice deficient in GUCY2C (Gucy2c−/−) exhibited barrier hyperpermeability associated with reduced junctional proteins. Conversely, activation of GUCY2C in mice reduced barrier permeability associated with increased junctional proteins. Further, silencing GUCY2C exacerbated, while activation reduced, chemical barrier disruption and colitis. Moreover, eliminating GUCY2C amplified, while activation reduced, systemic oxidative DNA damage. This genotoxicity was associated with increased spontaneous …


The Minimum M3-M4 Loop Length Of Neurotransmitter-Activated Pentameric Receptors Is Critical For The Structural Integrity Of Cytoplasmic Portals, Daniel T. Baptista-Hon, Tarek Z. Deeb, Jeremy J. Lambert, John A. Peters, Tim G. Hales Jul 2013

The Minimum M3-M4 Loop Length Of Neurotransmitter-Activated Pentameric Receptors Is Critical For The Structural Integrity Of Cytoplasmic Portals, Daniel T. Baptista-Hon, Tarek Z. Deeb, Jeremy J. Lambert, John A. Peters, Tim G. Hales

Pharmacology and Physiology Faculty Publications

The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes …