Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Atf4 Is An Oxidative Stress–Inducible, Prodeath Transcription Factor In Neurons In Vitro And In Vivo, Philipp Lange, Juan Chavez, John T. Pinto, Giovanni Coppola, Chiao-Wang Sun, Tim Townes, Rajiv Ratan May 2008

Atf4 Is An Oxidative Stress–Inducible, Prodeath Transcription Factor In Neurons In Vitro And In Vivo, Philipp Lange, Juan Chavez, John T. Pinto, Giovanni Coppola, Chiao-Wang Sun, Tim Townes, Rajiv Ratan

NYMC Faculty Publications

Oxidative stress is pathogenic in neurological diseases, including stroke. The identity of oxidative stress-inducible transcription factors and their role in propagating the death cascade are not well known. In an in vitro model of oxidative stress, the expression of the bZip transcription factor activating transcription factor 4 (ATF4) was induced by glutathione depletion and localized to the promoter of a putative death gene in neurons. Germline deletion of ATF4 resulted in a profound reduction in oxidative stress-induced gene expression and resistance to oxidative death. In neurons, ATF4 modulates an early, upstream event in the death pathway, as resistance to oxidative …


Electrical Detection Of The Temperature Induced Melting Transition Of A Dna Hairpin Covalently Attached To Gold Interdigitated Microelectrodes, Greg P. Brewood, Yaswanth Rangineni, Daniel J. Fish, Ashwini Bhandiwad, David R. Evans, Raj Solanki, Albert S. Benight Jan 2008

Electrical Detection Of The Temperature Induced Melting Transition Of A Dna Hairpin Covalently Attached To Gold Interdigitated Microelectrodes, Greg P. Brewood, Yaswanth Rangineni, Daniel J. Fish, Ashwini Bhandiwad, David R. Evans, Raj Solanki, Albert S. Benight

Chemistry Faculty Publications and Presentations

The temperature induced melting transition of a self-complementary DNA strand covalently attached at the 5' end to the surface of a gold interdigitated microelectrode (GIME) was monitored in a novel, label-free, manner. The structural state of the hairpin was assessed by measuring four different electronic properties of the GIME (capacitance, impedance, dissipation factor and phase angle) as a function of temperature from 25 degrees C to 80 degrees C. Consistent changes in all four electronic properties of the GIME were observed over this temperature range, and attributed to the transition of the attached single-stranded DNA (ssDNA) from an intramolecular, folded …