Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2007

Dartmouth College

Metabolism

Medical Genetics

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

A Developmental Cycle Masks Output From The Circadian Oscillator Under Conditions Of Choline Deficiency In Neurospora, Mi Shi, Luis F. Larrondo, Jennifer J. Loros, Jay C. Dunlap Dec 2007

A Developmental Cycle Masks Output From The Circadian Oscillator Under Conditions Of Choline Deficiency In Neurospora, Mi Shi, Luis F. Larrondo, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

In Neurospora, metabolic oscillators coexist with the circadian transcriptional/translational feedback loop governed by the FRQ (Frequency) and WC (White Collar) proteins. One of these, a choline deficiency oscillator (CDO) observed in chol-1 mutants grown under choline starvation, drives an uncompensated long-period developmental cycle ( approximately 60-120 h). To assess possible contributions of this metabolic oscillator to the circadian system, molecular and physiological rhythms were followed in liquid culture under choline starvation, but these only confirmed that an oscillator with a normal circadian period length can run under choline starvation. This finding suggested that long-period developmental cycles elicited by nutritional stress …


Bifa, A Cyclic-Di-Gmp Phosphodiesterase, Inversely Regulates Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Sherry L. Kuchma, Kimberly M. Brothers, Judith H. Merritt, Nicole T. Liberati, Frederick M. Ausubel, George A. O'Toole Jun 2007

Bifa, A Cyclic-Di-Gmp Phosphodiesterase, Inversely Regulates Biofilm Formation And Swarming Motility By Pseudomonas Aeruginosa Pa14, Sherry L. Kuchma, Kimberly M. Brothers, Judith H. Merritt, Nicole T. Liberati, Frederick M. Ausubel, George A. O'Toole

Dartmouth Scholarship

The intracellular signaling molecule, cyclic-di-GMP (c-di-GMP), has been shown to influence bacterial behaviors, including motility and biofilm formation. We report the identification and characterization of PA4367, a gene involved in regulating surface-associated behaviors in Pseudomonas aeruginosa. The PA4367 gene encodes a protein with an EAL domain, associated with c-di-GMP phosphodiesterase activity, as well as a GGDEF domain, which is associated with a c-di-GMP-synthesizing diguanylate cyclase activity. Deletion of the PA4367 gene results in a severe defect in swarming motility and a hyperbiofilm phenotype; thus, we designate this gene bifA, for biofilm formation. We show that BifA localizes to the inner …


P53 Activation By Knockdown Technologies, Mara E. Robu, Jon D. Larson, Aidas Nasevicius, Soraya Beiraghi, Charles Brenner May 2007

P53 Activation By Knockdown Technologies, Mara E. Robu, Jon D. Larson, Aidas Nasevicius, Soraya Beiraghi, Charles Brenner

Dartmouth Scholarship

Morpholino phosphorodiamidate antisense oligonucleotides (MOs) and short interfering RNAs (siRNAs) are commonly used platforms to study gene function by sequence-specific knockdown. Both technologies, however, can elicit undesirable off-target effects. We have used several model genes to study these effects in detail in the zebrafish, Danio rerio. Using the zebrafish embryo as a template, correct and mistargeting effects are readily discernible through direct comparison of MO-injected animals with well-studied mutants. We show here indistinguishable off-targeting effects for both maternal and zygotic mRNAs and for both translational and splice-site targeting MOs. The major off-targeting effect is mediated through p53 activation, as detected …


The Pseudomonas Aeruginosa Secreted Protein Pa2934 Decreases Apical Membrane Expression Of The Cystic Fibrosis Transmembrane Conductance Regulator, Daniel P. Maceachran, Siying Ye, Jennifer M. Bomberger, Deborah A. Hogan, Agnieszka Swiatecka-Urban, Bruce Stanton, George A. O'Toole May 2007

The Pseudomonas Aeruginosa Secreted Protein Pa2934 Decreases Apical Membrane Expression Of The Cystic Fibrosis Transmembrane Conductance Regulator, Daniel P. Maceachran, Siying Ye, Jennifer M. Bomberger, Deborah A. Hogan, Agnieszka Swiatecka-Urban, Bruce Stanton, George A. O'Toole

Dartmouth Scholarship

We previously reported that Pseudomonas aeruginosa PA14 secretes a protein that can reduce the apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Here we report that we have used a proteomic approach to identify this secreted protein as PA2934 [corrected], and we have named the gene cif, for CFTR inhibitory factor. We demonstrate that Cif is a secreted protein and is found associated with outer membrane-derived vesicles. Expression of Cif in Escherichia coli and purification of the C-terminal six-His-tagged Cif protein showed that Cif is necessary and sufficient to mediate the reduction in apical membrane expression …


Cpg Hypomethylation In A Large Domain Encompassing The Embryonic Β-Like Globin Genes In Primitive Erythrocytes, Mei Hsu, Rodwell R. Mabaera, Christopher H. Lowrey, David I. K. Martin, Steven Fiering Apr 2007

Cpg Hypomethylation In A Large Domain Encompassing The Embryonic Β-Like Globin Genes In Primitive Erythrocytes, Mei Hsu, Rodwell R. Mabaera, Christopher H. Lowrey, David I. K. Martin, Steven Fiering

Dartmouth Scholarship

There is little evidence addressing the role of CpG methylation in transcriptional control of genes that do not contain CpG islands. This is reflected in the ongoing debate about whether CpG methylation merely suppresses retroelements or if it also plays a role in developmental and tissue-specific gene regulation. The genes of the β-globin locus are an important model of mammalian developmental gene regulation and do not contain CpG islands. We have analyzed the methylation status of regions in the murine β-like globin locus in uncultured primitive and definitive erythroblasts and other cultured primary and transformed cell types. A large (∼20-kb) …


Transgenic Cyclin E Triggers Dysplasia And Multiple Pulmonary Adenocarcinomas, Yan Ma, Steven Fiering, Candice Black, Xi Liu, Ziqiang Yuan, Vincent A. Memoli, David J. Robbins, Heather A. Bentley, Gregory J. Tsongalis, Eugene Demidenko, Sarah J. Freemantle, Ethan Dmitrovsky Mar 2007

Transgenic Cyclin E Triggers Dysplasia And Multiple Pulmonary Adenocarcinomas, Yan Ma, Steven Fiering, Candice Black, Xi Liu, Ziqiang Yuan, Vincent A. Memoli, David J. Robbins, Heather A. Bentley, Gregory J. Tsongalis, Eugene Demidenko, Sarah J. Freemantle, Ethan Dmitrovsky

Dartmouth Scholarship

Cyclin E is a critical G(1)-S cell cycle regulator aberrantly expressed in bronchial premalignancy and lung cancer. Cyclin E expression negatively affects lung cancer prognosis. Its role in lung carcinogenesis was explored. Retroviral cyclin E transduction promoted pulmonary epithelial cell growth, and small interfering RNA targeting of cyclin E repressed this growth. Murine transgenic lines were engineered to mimic aberrant cyclin E expression in the lung. Wild-type and proteasome degradation-resistant human cyclin E transgenic lines were independently driven by the human surfactant C (SP-C) promoter. Chromosome instability (CIN), pulmonary dysplasia, sonic hedgehog (Shh) pathway activation, adenocarcinomas, and metastases occurred. Notably, …


The Myc Transactivation Domain Promotes Global Phosphorylation Of The Rna Polymerase Ii Carboxy-Terminal Domain Independently Of Direct Dna Binding, Victoria H. Cowling, Michael D. Cole Jan 2007

The Myc Transactivation Domain Promotes Global Phosphorylation Of The Rna Polymerase Ii Carboxy-Terminal Domain Independently Of Direct Dna Binding, Victoria H. Cowling, Michael D. Cole

Dartmouth Scholarship

Myc is a transcription factor which is dependent on its DNA binding domain for transcriptional regulation of target genes. Here, we report the surprising finding that Myc mutants devoid of direct DNA binding activity and Myc target gene regulation can rescue a substantial fraction of the growth defect in myc−/− fibroblasts. Expression of the Myc transactivation domain alone induces a transcription-independent elevation of the RNA polymerase II (Pol II) C-terminal domain (CTD) kinases cyclin-dependent kinase 7 (CDK7) and CDK9 and a global increase in CTD phosphorylation. The Myc transactivation domain binds to the transcription initiation sites of these promoters …