Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

B-Myb Acts As A Repressor Of Human Col1a1 Collagen Gene Expression By Interacting With Sp1 And Cbf Factors In Scleroderma Fibroblasts, Lucia Cicchillitti, Sergio A. Jimenez, Arturo Sala, Biaggio Saitta Mar 2004

B-Myb Acts As A Repressor Of Human Col1a1 Collagen Gene Expression By Interacting With Sp1 And Cbf Factors In Scleroderma Fibroblasts, Lucia Cicchillitti, Sergio A. Jimenez, Arturo Sala, Biaggio Saitta

Selected Works of Sergio Jiménez, MD, MACR

We investigated the role of B-Myb, a cell-cycle-regulated transcription factor, in the expression of the alpha1 (I) pro-collagen gene (COL1A1) in scleroderma fibroblasts. Scleroderma or SSc (systemic sclerosis) is a fibrotic disease characterized by excessive production of extracellular matrix components, especially type I collagen. Northern-blot analysis showed an inverse relationship between COL1A1 mRNA expression and that of B-Myb during exponential cell growth and during quiescence in human SSc fibroblasts. Overexpression of B-Myb in SSc fibroblasts was correlated with decreased COL1A1 mRNA expression. Transient transfections localized the down-regulatory effect of B-Myb to a region containing the proximal 174 bp of the …


The Nad(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation Of H202 And Plays An Integral Role In Insulin Signal Transduction, Kalyankar Mahadev, Hiroyuki Motoshima, Xiangdong Wu, Jean Marie Ruddy, Rebecca S. Arnold, Guangjie Cheng, J. David Lambeth, Barry J. Goldstein Mar 2004

The Nad(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation Of H202 And Plays An Integral Role In Insulin Signal Transduction, Kalyankar Mahadev, Hiroyuki Motoshima, Xiangdong Wu, Jean Marie Ruddy, Rebecca S. Arnold, Guangjie Cheng, J. David Lambeth, Barry J. Goldstein

Department of Medicine Faculty Papers

Insulin stimulation of target cells elicits a burst of H2O2 that enhances tyrosine phosphorylation of the insulin receptor and its cellular substrate proteins as well as distal signaling events in the insulin action cascade. The molecular mechanism coupling the insulin receptor with the cellular oxidant-generating apparatus has not been elucidated. Using reverse transcription-PCR and Northern blot analyses, we found that Nox4, a homolog of gp91phox, the phagocytic NAD(P)H oxidase catalytic subunit, is prominently expressed in insulin-sensitive adipose cells. Adenovirus-mediated expression of Nox4 deletion constructs lacking NAD(P)H or FAD/NAD(P)H cofactor binding domains acted in a dominant-negative …