Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2004

Metabolism

Medical Cell Biology

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Interdependent Assembly Of Specific Regulatory Lipids And Membrane Fusion Proteins Into The Vertex Ring Domain Of Docked Vacuoles, Rutilio A. Fratti, Youngsoo Jun, Alexey J. Merz, Nathan Margolis, William Wickner Dec 2004

Interdependent Assembly Of Specific Regulatory Lipids And Membrane Fusion Proteins Into The Vertex Ring Domain Of Docked Vacuoles, Rutilio A. Fratti, Youngsoo Jun, Alexey J. Merz, Nathan Margolis, William Wickner

Dartmouth Scholarship

Membrane microdomains are assembled by lipid partitioning (e.g., rafts) or by protein-protein interactions (e.g., coated vesicles). During docking, yeast vacuoles assemble "vertex" ring-shaped microdomains around the periphery of their apposed membranes. Vertices are selectively enriched in the Rab GTPase Ypt7p, the homotypic fusion and vacuole protein sorting complex (HOPS)-VpsC Rab effector complex, SNAREs, and actin. Membrane fusion initiates at vertex microdomains. We now find that the "regulatory lipids" ergosterol, diacylglycerol and 3- and 4-phosphoinositides accumulate at vertices in a mutually interdependent manner. Regulatory lipids are also required for the vertex enrichment of SNAREs, Ypt7p, and HOPS. Conversely, SNAREs and actin …


Multiple Mechanisms Regulate Numa Dynamics At Spindle Poles, Olga Kisurina-Evgenieva, Gary Mack, Quansheng Du, Ian Macara, Alexey Khodjakov, Duane A. Compton Sep 2004

Multiple Mechanisms Regulate Numa Dynamics At Spindle Poles, Olga Kisurina-Evgenieva, Gary Mack, Quansheng Du, Ian Macara, Alexey Khodjakov, Duane A. Compton

Dartmouth Scholarship

The large coiled-coil protein NuMA plays an essential role in organizing microtubule minus ends at spindle poles in vertebrate cells. Here, we use both in vivo and in vitro methods to examine NuMA dynamics at mitotic spindle poles. Using fluorescence recovery after photobleaching, we show that an exogenously expressed green-fluorescent-protein/NuMA fusion undergoes continuous exchange between soluble and spindle-associated pools in living cells. These dynamics require cellular energy and display an average half-time for fluorescence recovery of approximately 3 minutes. To explore how NuMA dynamics at spindle poles is regulated, we exploited the association of NuMA with microtubule asters formed in …


Fibroblast Growth Factor 2 Endocytosis In Endothelial Cells Proceed Via Syndecan-4-Dependent Activation Of Rac1 And A Cdc42-Dependent Macropinocytic Pathway, Eugene Tkachenko, Esther Lutgens, Radu-Virgil Stan, Michael Simons Feb 2004

Fibroblast Growth Factor 2 Endocytosis In Endothelial Cells Proceed Via Syndecan-4-Dependent Activation Of Rac1 And A Cdc42-Dependent Macropinocytic Pathway, Eugene Tkachenko, Esther Lutgens, Radu-Virgil Stan, Michael Simons

Dartmouth Scholarship

Full activity of fibroblast growth factors (FGFs) requires their internalization in addition to the interaction with cell surface receptors. Recent studies have suggested that the transmembrane proteoglycan syndecan-4 functions as a FGF2 receptor. In this study we investigated the molecular basis of syndecan endocytosis and its role in FGF2 internalization in endothelial cells. We found that syndecan-4 uptake, induced either by treatment with FGF2 or by antibody clustering, requires the integrity of plasma membrane lipid rafts for its initiation, occurs in a non-clathrin-, non-dynamin-dependent manner and involves Rac1, which is activated by syndecan-4 clustering. FGF2 was internalized in a complex …


Trans-Snare Interactions Elicit Ca2+ Efflux From The Yeast Vacuole Lumen, Alexey J. Merz, William T. Wickner Jan 2004

Trans-Snare Interactions Elicit Ca2+ Efflux From The Yeast Vacuole Lumen, Alexey J. Merz, William T. Wickner

Dartmouth Scholarship

Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p-GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and …