Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Development Of Long-Acting Antiviral Drug Nanoformulations, Denise Cobb May 2021

Development Of Long-Acting Antiviral Drug Nanoformulations, Denise Cobb

Theses & Dissertations

Antiretroviral therapy (ART) has improved the quality and duration of life for people living with human immunodeficiency virus (HIV) infection. However, opportunities to improve its profile abound. ART is limited by putative viral reservoir penetrance, emergence of viral mutations, inherent toxicities, and regimen non-adherence. These highlight the need improved drug delivery schemes. Previously, our lab has demonstrated that targeting mononuclear phagocytes for antiretroviral drug delivery extends drug half-life and improves penetrance into viral reservoirs, addressing these limitations of ART. Herein, we developed synthetic and biologic antiretroviral (ARV) drug nanocarriers improve the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of ARVs through …


Synthesis And Characterization Of A Long-Acting Emtricitabine Prodrug Nanoformulation, Ibrahim M. Ibrahim May 2019

Synthesis And Characterization Of A Long-Acting Emtricitabine Prodrug Nanoformulation, Ibrahim M. Ibrahim

Theses & Dissertations

The introduction of highly active antiretroviral therapy led to a paradigm shift in the management of HIV/AIDS changing a disease considered “a death sentence” to “a manageable chronic disease”. Nevertheless, challenges exist for successful treatment of HIV, including patient adherence to the complex daily regimens and the inability of current formulations to target viral sanctuaries. Introduction of nanoformulated antiretroviral therapy (ART) is a promising alternative to tackle these challenges. Our laboratory has been focusing on developing long-acting (LA) nanoformulated antiretrovirals and has succeeded in developing LA integrase inhibitors. However, challenges for this approach extend to a range of short-acting hydrophilic …


Development Of A Long-Acting Nanoformulation Of Dolutegravir For Prevention And Treatment Of Hiv-1 Infection, Brady Sillman May 2019

Development Of A Long-Acting Nanoformulation Of Dolutegravir For Prevention And Treatment Of Hiv-1 Infection, Brady Sillman

Theses & Dissertations

Dolutegravir (DTG) is a potent human immunodeficiency virus type 1 (HIV-1) integrase strand-transfer inhibitor (INSTI) with a high barrier to viral drug resistance. However, opportunities to improve its profile abound. These include extending the drug’s apparent half-life, increasing penetrance to “putative” viral reservoirs, and reducing inherent toxicities. These highlight, in part, the need for long-acting, slow effective release antiretroviral therapy (LASER ART) delivery schemes. A long-acting (LA) DTG was made by synthesizing a hydrophobic and lipophilic prodrug encased with poloxamer (P407) surfactant. This modified DTG (MDTG) reduced systemic metabolism and polarity, increased lipophilicity and membrane permeability, improved encapsulation, and formed …


Proposed Biomedical Applications Of Zirconium-Based Metal-Organic Frameworks As Drug Delivery Systems, Ariel Margaret Perry-Mills Jan 2019

Proposed Biomedical Applications Of Zirconium-Based Metal-Organic Frameworks As Drug Delivery Systems, Ariel Margaret Perry-Mills

Honors Undergraduate Theses

Metal-organic frameworks (MOFs) are a class of highly crystalline nanoporous materials that self-assemble from inorganic metal oxide clusters and multitopic organic linkers. MOFs can be altered in terms of the types of metals and structures of organic linkers used, allowing for a high degree of customization and manipulation of the synergistic chemical or physical properties that arise from the precise coordination of their molecular components, including exceptionally large surface area and pore size. Zirconium-based MOFs, called UiOs in honor of their conception at the University of Oslo, also show remarkable chemical stability in both acidic and basic environments, making them …


Evaluating The Effects Of Antibody-Conjugated Multi-Walled Carbon Nanotubes In Combination With Microwave Irradiation, Amy Chall Jan 2019

Evaluating The Effects Of Antibody-Conjugated Multi-Walled Carbon Nanotubes In Combination With Microwave Irradiation, Amy Chall

Electronic Theses and Dissertations

Cancer remains one of the largest public health concerns of our day, particularly in developed countries where technological advances have allowed populations to live well into their eighth decade. In America, those in their 80’s have a 1 in 2 chance of developing cancer in their lifetime. Prostate cancer, specifically is the second leading cause of cancer deaths in males. Traditional cancer therapies cause high levels of toxicity to the patient due to mechanisms of action that often attack cancer cells and healthy cells alike. The holy grail of cancer research is to find a treatment that targets the cancer …


Functionalized Carbon Nanotubes In Hydrophobic Drug Delivery, Kun Chen Dec 2018

Functionalized Carbon Nanotubes In Hydrophobic Drug Delivery, Kun Chen

Dissertations

The direct incorporation of carboxylated carbon nanotubes (f-CNTs) into hydrophobic drug particles during their formation via anti-solvent precipitation is presented. The approach is tested using two drugs namely antifungal agent Griseofulvin (GF) and antibiotic Sulfamethoxazole (SMZ) that have very different aqueous solubility. It is observed that the f-CNTs dispersed in the water serve as nucleating sites for crystallization and are readily incorporated into the drug particles without altering crystal structure or other properties. The results show that the hydrophilic f-CNTs dramatically enhance dissolution rate for both drugs. The increased degree of functionalization leads to higher hydrophilicity and therefore faster dissolution …


Effects Of Carboxylated Nanodiamonds On Macrophages During And After Differentiation, Maisoun E. Bani Hani Oct 2017

Effects Of Carboxylated Nanodiamonds On Macrophages During And After Differentiation, Maisoun E. Bani Hani

Biological Sciences Theses & Dissertations

Nanodiamonds (ND) are a carbon-based nanomaterial that are increasingly being proposed for developing novel imaging techniques, as carriers of biomolecules and therapeutic drugs, as coatings for implants, and for other biomedical applications. The exceptional chemical, mechanical, and optical properties of ND make this material suitable in a wide range of fields. The application of ND in the biomedical field is attractive but requires more in-depth investigation into the safety of ND and its interactions with different cells and systems. The effects of ND on the immune system are not fully understood or investigated and there are several controverting reports regarding …