Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu Oct 2013

Involvement Of Reactive Oxygen Species In A Feed-Forward Mechanism Of Na/K-Atpase Mediated Signaling, Yanling Yan, Anna P. Shapiro, Steven Haller, Vinal Katragadda, Lijun Liu, Jiang Tian, Venkatesha Basrur, Deepak Malhotra, Zi-Jian Xie, Nader G. Abraham, Joseph I. Shapiro Md, Jiang Liu

Biochemistry and Microbiology

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of Na/K-ATPase and sodium/proton exchanger isoform 3, and inhibition of active transepithelial 22Na+ transport. Disruption of the Na/K-ATPase·c-Src signaling complex attenuated ouabain-stimulated protein carbonylation. Ouabain-stimulated protein carbonylation is reversed after removal of ouabain, and this reversibility is largely independent of de novo protein synthesis and degradation by either the lysosome or the proteasome pathways. Furthermore, …


Evidence For Sigma Factor Competition In The Regulation Of Alginate Production By Pseudomonas Aeruginosa, Yeshi Yin, T. Ryan Withers, Xin Wang, Hongwei D. Yu Aug 2013

Evidence For Sigma Factor Competition In The Regulation Of Alginate Production By Pseudomonas Aeruginosa, Yeshi Yin, T. Ryan Withers, Xin Wang, Hongwei D. Yu

Biochemistry and Microbiology

Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU(AlgUA61V). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgUA61V, 2) an overexpression of …


Truncation Of Type Iv Pilin Induces Mucoidy In Pseudomonas Aeruginosa Strain Pao579, T. Ryan Withers, F. Heath Damron, Yeshi Yin, Hongwei D. Yu Jun 2013

Truncation Of Type Iv Pilin Induces Mucoidy In Pseudomonas Aeruginosa Strain Pao579, T. Ryan Withers, F. Heath Damron, Yeshi Yin, Hongwei D. Yu

Biochemistry and Microbiology

Pseudomonas aeruginosa is a Gram negative, opportunistic pathogen that uses the overproduction of alginate, a surface polysaccharide, to form biofilms in vivo. Overproduction of alginate, also known as mucoidy, affords the bacterium protection from the host's defenses and facilitates the establishment of chronic lung infections in individuals with cystic fibrosis. Expression of the alginate biosynthetic operon is primarily controlled by the alternative sigma factor AlgU (AlgT/σ22). In a nonmucoid strain, AlgU is sequestered by the transmembrane antisigma factor MucA to the cytoplasmic membrane. AlgU can be released from MucA via regulated intramembrane proteolysis by proteases AlgW and MucP …


Cyclooxygenase-2 Dependent Metabolism Of 20-Hete Increases Adiposity And Adipocyte Enlargement In Mesenchymal Stem Cell-Derived Adipocytes, Dong Hyun Kim, Nitin Puri, Komal Sodhi, John R. Falck, Nader G. Abraham, Joseph I. Shapiro M.D., Michal L. Schwartzman Jan 2013

Cyclooxygenase-2 Dependent Metabolism Of 20-Hete Increases Adiposity And Adipocyte Enlargement In Mesenchymal Stem Cell-Derived Adipocytes, Dong Hyun Kim, Nitin Puri, Komal Sodhi, John R. Falck, Nader G. Abraham, Joseph I. Shapiro M.D., Michal L. Schwartzman

Biochemistry and Microbiology

Abstract 20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a product of the cytochrome P450 (CYP)-catalyzed [1] -hydroxylation of arachidonic acid, induces oxidative stress and, in clinical studies, is associated with increased body mass index (BMI) and the metabolic syndrome. This study was designed to examine the effects of exogenous 20- HETE on mesenchymal stem cell (MSC)-derived adipocytes.

The expression levels of CYP4A11 and CYP4F2 (major 20-HETE synthases in humans) in MSCs decreased during adipocyte differentiation; however, exogenous administration of 20-HETE (0.1–1 M) increased adipogenesis in a dose dependent manner in these cells ( P < 0.05). The inability of a 20-HETE analog to reproduce these effects suggested the involvement of a metabolic product of 20-HETE in mediating its pro-adipogenic effects. A cyclooxygenase (COX)-1 selective inhibitor enhanced, whereas a COX-2 selective or a dual COX-1/2 inhibitor attenuated adipogenesis induced by 20-HETE. The COX-derived metabolite of 20-HETE, 20-OH-PGE 2 , enhanced adipogenesis and lipid accumulation in MSCs. The pro-adipogenic effects of 20-HETE and 20-OH-PGE 2 resulted in the increased expression of the adipogenic regulators PPAR and -catenin in MSC-derived adipocytes. Taken together we show for the fi rst time that 20-HETE-derived COX-2-dependent 20-OH-PGE 2 enhances mature infl amed adipocyte hypertrophy in MSC undergoing adipogenic differentiation. — Kim, D. H., N. Puri, K. Sodhi, J. R. Falck, N. G. Abraham, J. Shapiro, and M. L. Schwartzman. Cyclooxygenase-2 dependent metabolism of 20-HETE increasesadiposity and adipocyte enlargement in mesenchymal stem cell-derived adipocytes.


Gender Differences In The Development Of Uremic Cardiomyopathy Following Partial Nephrectomy: Role Of Progesterone, Christopher A. Drummond, George Buddny, Steven T. Haller, Jiang Liu, Yanling Yan, Zijian Xie, Deepak Malhotra, Joseph I. Shapiro Md, Jiang Tian Jan 2013

Gender Differences In The Development Of Uremic Cardiomyopathy Following Partial Nephrectomy: Role Of Progesterone, Christopher A. Drummond, George Buddny, Steven T. Haller, Jiang Liu, Yanling Yan, Zijian Xie, Deepak Malhotra, Joseph I. Shapiro Md, Jiang Tian

Biochemistry and Microbiology

Gender difference has been suggested as a risk factor for developing cardiovascular and renal diseases in humans and experimental animals. As a major sex hormone, progesterone was reported to compete with cardiotonic steroid binding to Na/K-ATPase. Our previous publication demonstrated that cardiotonic steroids (e.g., marinobufagenin) play an important role in the development of experimental uremic cardiomyopathy. We also observed that the putative mineralocorticoid antagonists, spironolactone and its major metabolite canrenone, antagonize binding of cardiotonic steroids to Na/K-ATPase in a competitive manner and also ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy. In the following studies, we noted that progesterone displayed …