Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Additive Manufacturing Techniques And Their Biomedical Applications, Yujing Liu, Wei Wang, Laichang Zhang Dec 2017

Additive Manufacturing Techniques And Their Biomedical Applications, Yujing Liu, Wei Wang, Laichang Zhang

Research outputs 2014 to 2021

Additive manufacturing (AM), also known as three-dimensional (3D) printing, is gaining increasing attention in medical fields, especially in dental and implant areas. Because AM technologies have many advantages in comparison with traditional technologies, such as the ability to manufacture patient-specific complex components, high material utilization, support of tissue growth, and a unique customized service for individual patients, AM is considered to have a large potential market in medical fields. This brief review presents the recent progress of 3D-printed ­biomedical materials for bone applications, mainly for metallic materials, including multifunctional alloys with high strength and low Young’s modulus, shape memory alloys, …


An Investigation Into Spike-Based Neuromorphic Approaches For Artificial Olfactory Systems, Anup Vanarse, Adam Osseiran, Alexander Rassau Jan 2017

An Investigation Into Spike-Based Neuromorphic Approaches For Artificial Olfactory Systems, Anup Vanarse, Adam Osseiran, Alexander Rassau

Research outputs 2014 to 2021

The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over …