Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Effects Of Reamer-Femoral Component Offset On Cement Mantle Penetration In Hip Resurfacing Arthroplasty, Mark Lloyd Paulick May 2010

Effects Of Reamer-Femoral Component Offset On Cement Mantle Penetration In Hip Resurfacing Arthroplasty, Mark Lloyd Paulick

Master's Theses

Hip resurfacing arthroplasty has changed the treatment of end stage arthritis without severe deformity for young, active adults. Presently, there are varying clinical approaches to implant design selection and cementation techniques. The purpose of this project is to determine what amount of reamer-femoral component offset allows for the best cement penetration into the femoral head.

Rapid prototyped femoral component models were produced with reamer femoral component offsets of 0.0 mm, 0.5 mm, and 1.0 mm. After implantation onto models of reamed femoral heads made from high-density open-cell reticulated carbon foam, cement penetration was assessed from cross-sections of the foam-implant unit. …


An Investigation Of Humeral Stress Fractures In Racing Thoroughbreds Using A 3d Finite Element Model In Conjunction With A Bone Remodeling Algorithm, Ryan James Moore Feb 2010

An Investigation Of Humeral Stress Fractures In Racing Thoroughbreds Using A 3d Finite Element Model In Conjunction With A Bone Remodeling Algorithm, Ryan James Moore

Master's Theses

The humerus of a racing horse Thoroughbred is highly susceptible to stress fractures at a characteristic location as a result of cyclic loading. The propensity of a Thoroughbred to exhibit humeral fracture has made equines useful models in the epidemiology of stress fractures. In this study, a racing Thoroughbred humerus was simulated during training using a 3D finite element model in conjunction with a bone remodeling algorithm. Nine muscle forces and two contact forces were applied to the 3-dimensional finite element model, which contains four separate load cases representing fore-stance, mid-stance, aft-stance, and standing. Four different training programs were incorporated …