Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Journal Articles: Pharmaceutical Sciences

Mutation

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Samhd1 Is A Single-Stranded Nucleic Acid Binding Protein With No Active Site-Associated Nuclease Activity., Kyle J. Seamon, Zhiqiang Sun, Luda S. Shlyakhtenko, Yuri L. Lyubchenko, James T. Stivers Jul 2015

Samhd1 Is A Single-Stranded Nucleic Acid Binding Protein With No Active Site-Associated Nuclease Activity., Kyle J. Seamon, Zhiqiang Sun, Luda S. Shlyakhtenko, Yuri L. Lyubchenko, James T. Stivers

Journal Articles: Pharmaceutical Sciences

The HIV-1 restriction factor SAMHD1 is a tetrameric enzyme activated by guanine nucleotides with dNTP triphosphate hydrolase activity (dNTPase). In addition to this established activity, there have been a series of conflicting reports as to whether the enzyme also possesses single-stranded DNA and/or RNA 3'-5' exonuclease activity. SAMHD1 was purified using three chromatography steps, over which the DNase activity was largely separated from the dNTPase activity, but the RNase activity persisted. Surprisingly, we found that catalytic and nucleotide activator site mutants of SAMHD1 with no dNTPase activity retained the exonuclease activities. Thus, the exonuclease activity cannot be associated with any …


Dna Synapsis Through Transient Tetramerization Triggers Cleavage By Ecl18ki Restriction Enzyme., Mindaugas Zaremba, Amelia Owsicka, Gintautas Tamulaitis, Giedrius Sasnauskas, Luda S. Shlyakhtenko, Alexander Y. Lushnikov, Yuri L. Lyubchenko, Niels Laurens, Bram Van Den Broek, Gijs J.L. Wuite, Virginijus Siksnys Nov 2010

Dna Synapsis Through Transient Tetramerization Triggers Cleavage By Ecl18ki Restriction Enzyme., Mindaugas Zaremba, Amelia Owsicka, Gintautas Tamulaitis, Giedrius Sasnauskas, Luda S. Shlyakhtenko, Alexander Y. Lushnikov, Yuri L. Lyubchenko, Niels Laurens, Bram Van Den Broek, Gijs J.L. Wuite, Virginijus Siksnys

Journal Articles: Pharmaceutical Sciences

To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer-dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the …


Triplet Repeat Dna Structures And Human Genetic Disease: Dynamic Mutations From Dynamic Dna., Richard R. Sinden, Vladimir N. Potaman, Elena A. Oussatcheva, Christopher E. Pearson, Yuri L. Lyubchenko, Luda S. Shlyakhtenko Feb 2002

Triplet Repeat Dna Structures And Human Genetic Disease: Dynamic Mutations From Dynamic Dna., Richard R. Sinden, Vladimir N. Potaman, Elena A. Oussatcheva, Christopher E. Pearson, Yuri L. Lyubchenko, Luda S. Shlyakhtenko

Journal Articles: Pharmaceutical Sciences

Fourteen genetic neurodegenerative diseases and three fragile sites have been associated with the expansion of (CTG)n (CAG)n, (CGG)n (CCG)n, or (GAA)n (TTC)n repeat tracts. Different models have been proposed for the expansion of triplet repeats, most of which presume the formation of alternative DNA structures in repeat tracts. One of the most likely structures, slipped strand DNA, may stably and reproducibly form within triplet repeat sequences. The propensity to form slipped strand DNA is proportional to the length and homogeneity of the repeat tract. The remarkable stability of slipped strand DNA may, in part, be due to loop-loop interactions facilitated …