Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Department of Biochemistry and Molecular Biology Faculty Papers

2015

Thomas Jefferson University

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Crosstalk Between Desmoglein 2 And Patched 1 Accelerates Chemical-Induced Skin Tumorigenesis., Donna M Brennan-Crispi, Claudia Hossain, Joya Sahu, Mary Brady, Natalia A Riobo, M G Mahoney Apr 2015

Crosstalk Between Desmoglein 2 And Patched 1 Accelerates Chemical-Induced Skin Tumorigenesis., Donna M Brennan-Crispi, Claudia Hossain, Joya Sahu, Mary Brady, Natalia A Riobo, M G Mahoney

Department of Biochemistry and Molecular Biology Faculty Papers

Aberrant activation of Hedgehog (Hh) signaling is causative of BCCs and has been associated with a fraction of SCCs. Desmoglein 2 (Dsg2) is an adhesion protein that is upregulated in many cancers and overexpression of Dsg2 in the epidermis renders mice more susceptible to squamous-derived neoplasia. Here we examined a potential crosstalk between Dsg2 and Hh signaling in skin tumorigenesis. Our findings show that Dsg2 modulates Gli1 expression, in vitro and in vivo. Ectopic expression of Dsg2 on Ptc1+/lacZ background enhanced epidermal proliferation and interfollicular activation of the Hh pathway. Furthermore, in response to DMBA/TPA, the Dsg2/Ptc1+/lacZ mice developed squamous …


Post-Transcriptional Modifications To Trna--A Response To The Genetic Code Degeneracy., Ya-Ming Hou, Wei Yang Apr 2015

Post-Transcriptional Modifications To Trna--A Response To The Genetic Code Degeneracy., Ya-Ming Hou, Wei Yang

Department of Biochemistry and Molecular Biology Faculty Papers

No abstract provided.


G Protein Βγ Subunits Regulate Cardiomyocyte Hypertrophy Through A Perinuclear Golgi Phosphatidylinositol 4-Phosphate Hydrolysis Pathway., S Malik, R G Derubio, M Trembley, R Irannejad, Philip B Wedegaertner, A V Smrcka Mar 2015

G Protein Βγ Subunits Regulate Cardiomyocyte Hypertrophy Through A Perinuclear Golgi Phosphatidylinositol 4-Phosphate Hydrolysis Pathway., S Malik, R G Derubio, M Trembley, R Irannejad, Philip B Wedegaertner, A V Smrcka

Department of Biochemistry and Molecular Biology Faculty Papers

We recently identified a novel GPCR-dependent pathway for regulation of cardiac hypertrophy that depends on Golgi phosphatidylinositol 4-phosphate (PI4P) hydrolysis by a specific isoform of phospholipase C (PLC), PLCε, at the nuclear envelope. How stimuli are transmitted from cell surface GPCRs to activation of perinuclear PLCε is not clear. Here we tested the role of G protein βγ subunits. Gβγ inhibition blocked ET-1-stimulated Golgi PI4P depletion in neonatal and adult ventricular myocytes. Blocking Gβγ at the Golgi inhibited ET-1-dependent PI4P depletion and nuclear PKD activation. Translocation of Gβγ to the Golgi stimulated perinuclear Golgi PI4P depletion and nuclear PKD activation. …