Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Department of Biochemistry and Molecular Biology Faculty Papers

Series

2011

Humans

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Mitochondrial Genome Sequence Analysis: A Custom Bioinformatics Pipeline Substantially Improves Affymetrix Mitochip V2.0 Call Rate And Accuracy., Hongbo M Xie, Juan C Perin, Theodore G Schurr, Matthew C Dulik, Sergey I Zhadanov, Joseph A Baur, Michael P King, Emily Place, Colleen Clarke, Michael Grauer, Jonathan Schug, Avni Santani, Anthony Albano, Cecilia Kim, Vincent Procaccio, Hakon Hakonarson, Xiaowu Gai, Marni J Falk Jan 2011

Mitochondrial Genome Sequence Analysis: A Custom Bioinformatics Pipeline Substantially Improves Affymetrix Mitochip V2.0 Call Rate And Accuracy., Hongbo M Xie, Juan C Perin, Theodore G Schurr, Matthew C Dulik, Sergey I Zhadanov, Joseph A Baur, Michael P King, Emily Place, Colleen Clarke, Michael Grauer, Jonathan Schug, Avni Santani, Anthony Albano, Cecilia Kim, Vincent Procaccio, Hakon Hakonarson, Xiaowu Gai, Marni J Falk

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: Mitochondrial genome sequence analysis is critical to the diagnostic evaluation of mitochondrial disease. Existing methodologies differ widely in throughput, complexity, cost efficiency, and sensitivity of heteroplasmy detection. Affymetrix MitoChip v2.0, which uses a sequencing-by-genotyping technology, allows potentially accurate and high-throughput sequencing of the entire human mitochondrial genome to be completed in a cost-effective fashion. However, the relatively low call rate achieved using existing software tools has limited the wide adoption of this platform for either clinical or research applications. Here, we report the design and development of a custom bioinformatics software pipeline that achieves a much improved call rate …


Potential For Interdependent Development Of Trna Determinants For Aminoacylation And Ribosome Decoding., Cuiping Liu, Howard Gamper, Hanqing Liu, Barry S Cooperman, Ya-Ming Hou Jan 2011

Potential For Interdependent Development Of Trna Determinants For Aminoacylation And Ribosome Decoding., Cuiping Liu, Howard Gamper, Hanqing Liu, Barry S Cooperman, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Although the nucleotides in tRNA required for aminoacylation are conserved in evolution, bacterial aminoacyl-transfer RNA synthetases are unable to acylate eukaryotic tRNA. The cross-species barrier may be due to the absence of eukaryote-specific domains from bacterial aminoacyl-transfer RNA synthetases. Here we show that whereas Escherichia coli CysRS cannot acylate human tRNA(Cys), the fusion of a eukaryote-specific domain of human CysRS overcomes the cross-species barrier in human tRNA(Cys). In addition to enabling recognition of the sequence differences in the tertiary core of tRNA(Cys), the fused eukaryotic domain redirects the specificity of E. coli CysRS from the A37 present in bacterial tRNA(Cys) …