Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Medicine and Health Sciences

Framework For Hyperspectral Image Processing And Quantification For Cancer Detection During Animal Tumor Surgery, Guolan Lu, Dongsheng Wang, Xulei Qin, Luma Halig, Susan Muller, Hongzheng Zhang, Amy Chen, Brian W. Pogue, Zhuo G. Chen Dec 2015

Framework For Hyperspectral Image Processing And Quantification For Cancer Detection During Animal Tumor Surgery, Guolan Lu, Dongsheng Wang, Xulei Qin, Luma Halig, Susan Muller, Hongzheng Zhang, Amy Chen, Brian W. Pogue, Zhuo G. Chen

Dartmouth Scholarship

Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, …


Leveraging Global Gene Expression Patterns To Predict Expression Of Unmeasured Genes, James Rudd, René A. Zelaya, Eugene Demidenko, Ellen L. Goode, Casey S. Greene S. Greene, Jennifer A. Doherty Dec 2015

Leveraging Global Gene Expression Patterns To Predict Expression Of Unmeasured Genes, James Rudd, René A. Zelaya, Eugene Demidenko, Ellen L. Goode, Casey S. Greene S. Greene, Jennifer A. Doherty

Dartmouth Scholarship

BackgroundLarge collections of paraffin-embedded tissue represent a rich resource to test hypotheses based on gene expression patterns; however, measurement of genome-wide expression is cost-prohibitive on a large scale. Using the known expression correlation structure within a given disease type (in this case, high grade serous ovarian cancer; HGSC), we sought to identify reduced sets of directly measured (DM) genes which could accurately predict the expression of a maximized number of unmeasured genes.


Development And Validation Of An Epitope Prediction Tool For Swine (Pigmatrix) Based On The Pocket Profile Method, Andres H. Gutiérrez, William D. Martin, Chris Bailey-Kellogg, Frances Terry, Leonard Moise, Anee S. De Groot Sep 2015

Development And Validation Of An Epitope Prediction Tool For Swine (Pigmatrix) Based On The Pocket Profile Method, Andres H. Gutiérrez, William D. Martin, Chris Bailey-Kellogg, Frances Terry, Leonard Moise, Anee S. De Groot

Dartmouth Scholarship

Background: T cell epitope prediction tools and associated vaccine design algorithms have accelerated the development of vaccines for humans. Predictive tools for swine and other food animals are not as well developed, primarily because the data required to develop the tools are lacking. Here, we overcome a lack of T cell epitope data to construct swine epitope predictors by systematically leveraging available human information. Applying the “pocket profile method ”, we use sequence and structural similarities in the binding pockets of human and swine major histocompatibility complex proteins to infer Swine Leukocyte Antigen (SLA) peptide binding preferences. We developed epitope-prediction …


Prediction Of Relevant Biomedical Documents: A Human Microbiome Case Study, Paul Thompson, Juliette C. Madan, Jason H. Moore Sep 2015

Prediction Of Relevant Biomedical Documents: A Human Microbiome Case Study, Paul Thompson, Juliette C. Madan, Jason H. Moore

Dartmouth Scholarship

Background:

Retrieving relevant biomedical literature has become increasingly difficult due to the large volume and rapid growth of biomedical publication. A query to a biomedical retrieval system often retrieves hundreds of results. Since the searcher will not likely consider all of these documents, ranking the documents is important. Ranking by recency, as PubMed does, takes into account only one factor indicating potential relevance. This study explores the use of the searcher’s relevance feedback judgments to support relevance ranking based on features more general than recency.

Results:

It was found that the researcher’s relevance judgments could be used to accurately predict …


Logarithmic Intensity Compression In Fluorescence Guided Surgery Applications, Alisha V. Dsouza, Huiyun Lin, Jason Gunn, Brian W. Pogue Aug 2015

Logarithmic Intensity Compression In Fluorescence Guided Surgery Applications, Alisha V. Dsouza, Huiyun Lin, Jason Gunn, Brian W. Pogue

Dartmouth Scholarship

The use of fluorescence video imaging to guide surgery is rapidly expanding, and improvements in camera readout dynamic range have not matched display capabilities. Logarithmic intensity compression is a fast, single-step mapping technique that can map the useable dynamic range of high-bit fluorescence images onto the typical 8-bit display and potentially be a variable dynamic contrast enhancement tool. We demonstrate a ∼4.6  times improvement in image quality quantified by image entropy and a dynamic range reduction by a factor of ∼380 by the use of log-compression tools in processing in vivo fluorescence images.


Principal Component Gene Set Enrichment (Pcgse), H. Robert Frost, Zhigang Li, Jason H. Moore Aug 2015

Principal Component Gene Set Enrichment (Pcgse), H. Robert Frost, Zhigang Li, Jason H. Moore

Dartmouth Scholarship

Background:

Although principal component analysis (PCA) is widely used for the dimensional reduction of biomedical data, interpretation of PCA results remains daunting. Most existing interpretation methods attempt to explain each principal component (PC) in terms of a small number of variables by generating approximate PCs with mainly zero loadings. Although useful when just a few variables dominate the population PCs, these methods can perform poorly on genomic data, where interesting biological features are frequently represented by the combined signal of functionally related sets of genes. While gene set testing methods have been widely used in supervised settings to quantify the …


Testing Multiple Hypotheses Through Imp Weighted Fdr Based On A Genetic Functional Network With Application To A New Zebrafish Transcriptome Study, Jiang Gui, Casey S. Greene, Con Sullivan, Walter Taylor, Jason H. Moore, Carol Kim Jun 2015

Testing Multiple Hypotheses Through Imp Weighted Fdr Based On A Genetic Functional Network With Application To A New Zebrafish Transcriptome Study, Jiang Gui, Casey S. Greene, Con Sullivan, Walter Taylor, Jason H. Moore, Carol Kim

Dartmouth Scholarship

In genome-wide studies, hundreds of thousands of hypothesis tests are performed simultaneously. Bonferroni correction and False Discovery Rate (FDR) can effectively control type I error but often yield a high false negative rate. We aim to develop a more powerful method to detect differentially expressed genes. We present a Weighted False Discovery Rate (WFDR) method that incorporate biological knowledge from genetic networks. We first identify weights using Integrative Multi-species Prediction (IMP) and then apply the weights in WFDR to identify differentially expressed genes through an IMP-WFDR algorithm. We performed a gene expression experiment to identify zebrafish genes that change expression …


Sparcoc: A New Framework For Molecular Pattern Discovery And Cancer Gene Identification, Shiqian Ma, Daniel Johnson, Cody Ashby, Donghai Xiong, Carole L. Cramer, Jason H. Moore, Shuzhong Zhang, Xiuzhen Huang Mar 2015

Sparcoc: A New Framework For Molecular Pattern Discovery And Cancer Gene Identification, Shiqian Ma, Daniel Johnson, Cody Ashby, Donghai Xiong, Carole L. Cramer, Jason H. Moore, Shuzhong Zhang, Xiuzhen Huang

Dartmouth Scholarship

It is challenging to cluster cancer patients of a certain histopathological type into molecular subtypes of clinical importance and identify gene signatures directly relevant to the subtypes. Current clustering approaches have inherent limitations, which prevent them from gauging the subtle heterogeneity of the molecular subtypes. In this paper we present a new framework: SPARCoC (Sparse-CoClust), which is based on a novel Common-background and Sparse-foreground Decomposition (CSD) model and the Maximum Block Improvement (MBI) co-clustering technique. SPARCoC has clear advantages compared with widely-used alternative approaches: hierarchical clustering (Hclust) and nonnegative matrix factorization (NMF). We apply SPARCoC to the study of lung …


Spectral Gene Set Enrichment (Sgse), H Robert Frost, Zhigang Li, Jason H. Moore Mar 2015

Spectral Gene Set Enrichment (Sgse), H Robert Frost, Zhigang Li, Jason H. Moore

Dartmouth Scholarship

Gene set testing is typically performed in a supervised context to quantify the association between groups of genes and a clinical phenotype. In many cases, however, a gene set-based interpretation of genomic data is desired in the absence of a phenotype variable. Although methods exist for unsupervised gene set testing, they predominantly compute enrichment relative to clusters of the genomic variables with performance strongly dependent on the clustering algorithm and number of clusters. We propose a novel method, spectral gene set enrichment (SGSE), for unsupervised competitive testing of the association between gene sets and empirical data sources. SGSE first computes …


Microarray Enriched Gene Rank, Eugene Demidenko Jan 2015

Microarray Enriched Gene Rank, Eugene Demidenko

Dartmouth Scholarship

We develop a new concept that reflects how genes are connected based on microarray data using the coefficient of determination (the squared Pearson correlation coefficient). Our gene rank combines a priori knowledge about gene connectivity, say, from the Gene Ontology (GO) database, and the microarray expression data at hand, called the microarray enriched gene rank, or simply gene rank (GR). GR, similarly to Google PageRank, is defined in a recursive fashion and is computed as the left maximum eigenvector of a stochastic matrix derived from microarray expression data. An efficient algorithm is devised that allows computation of GR for 50 …