Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Medicine and Health Sciences

Optimization Of Fluorescent Imaging In The Operating Room Through Pulsed Acquisition And Gating To Ambient Background Cycling, Kristian J. Sexton, Yan Zhao, Scott C. Davis, Shudong Jiang, Brian Pogue Apr 2017

Optimization Of Fluorescent Imaging In The Operating Room Through Pulsed Acquisition And Gating To Ambient Background Cycling, Kristian J. Sexton, Yan Zhao, Scott C. Davis, Shudong Jiang, Brian Pogue

Dartmouth Scholarship

The design of fluorescence imaging instruments for surgical guidance is rapidly evolving, and a key issue is to efficiently capture signals with high ambient room lighting. Here, we introduce a novel time-gated approach to fluorescence imaging synchronizing acquisition to the 120 Hz light of the room, with pulsed LED excitation and gated ICCD detection. It is shown that under bright ambient room light this technique allows for the detection of physiologically relevant nanomolar fluorophore concentrations, and in particular reduces the light fluctuations present from the room lights, making low concentration measurements more reliable. This is particularly relevant for the light …


Raman Spectroscopy Detects Distant Invasive Brain Cancer Cells Centimeters Beyond Mri Capability In Humans, Michael Jermyn, Joannie Desroches, Jeanne Mercier, Karl St-Arnaud Nov 2016

Raman Spectroscopy Detects Distant Invasive Brain Cancer Cells Centimeters Beyond Mri Capability In Humans, Michael Jermyn, Joannie Desroches, Jeanne Mercier, Karl St-Arnaud

Dartmouth Scholarship

Surgical treatment of brain cancer is limited by the inability of current imaging capabilities such as magnetic resonance imaging (MRI) to detect the entirety of this locally invasive cancer. This results in residual cancer cells remaining following surgery, leading to recurrence and death. We demonstrate that intraoperative Raman spectroscopy can detect invasive cancer cells centimeters beyond pathological T1-contrast-enhanced and T2-weighted MRI signals. This intraoperative optical guide can be used to detect invasive cancer cells and minimize post-surgical cancer burden. The detection of distant invasive cancer cells beyond MRI signal has the potential to increase the effectiveness of surgery and directly …


Microdose Fluorescence Imaging Of Aby-029 On An Operating Microscope Adapted By Custom Illumination And Imaging Modules, Jonathan T. Elliott, Alisha V. Dsouza, Kayla Marra, Brian W. Pogue, David Roberts, Keith Paulsen Sep 2016

Microdose Fluorescence Imaging Of Aby-029 On An Operating Microscope Adapted By Custom Illumination And Imaging Modules, Jonathan T. Elliott, Alisha V. Dsouza, Kayla Marra, Brian W. Pogue, David Roberts, Keith Paulsen

Dartmouth Scholarship

Fluorescence guided surgery has the potential to positively impact surgical oncology; current operating microscopes and stand-alone imaging systems are too insensitive or too cumbersome to maximally take advantage of new tumor-specific agents developed through the microdose pathway. To this end, a custom-built illumination and imaging module enabling picomolar-sensitive near-infrared fluorescence imaging on a commercial operating microscope is described. The limits of detection and system specifications are characterized, and in vivo efficacy of the system in detecting ABY-029 is evaluated in a rat orthotopic glioma model following microdose injections, showing the suitability of the device for microdose phase 0 clinical trials.


Portable, Parallel 9-Wavelength Near-Infrared Spectral Tomography (Nirst) System For Efficient Characterization Of Breast Cancer Within The Clinical Oncology Infusion Suite, Yan Zhao, Brian W. Pogue, Steffen J. Haider, Jiang Gui, Roberta Diflorio-Alexander, Keith Paulsen, Shudong Jiang Jun 2016

Portable, Parallel 9-Wavelength Near-Infrared Spectral Tomography (Nirst) System For Efficient Characterization Of Breast Cancer Within The Clinical Oncology Infusion Suite, Yan Zhao, Brian W. Pogue, Steffen J. Haider, Jiang Gui, Roberta Diflorio-Alexander, Keith Paulsen, Shudong Jiang

Dartmouth Scholarship

A portable near-infrared spectral tomography (NIRST) system was developed with simultaneous frequency domain (FD) and continuous-wave (CW) optical measurements for efficient characterization of breast cancer in a clinical oncology setting. Simultaneous FD and CW recordings were implemented to speed up acquisition to 3 minutes for all 9 wavelengths, spanning a range from 661nm to 1064nm. An adjustable interface was designed to fit various breast sizes and shapes. Spatial images of oxy- and deoxy-hemoglobin, water, lipid, and scattering components were reconstructed using a 2D FEM approach. The system was tested on a group of 10 normal subjects, who were examined bilaterally …


Improved Sensitivity To Fluorescence For Cancer Detection In Wide-Field Image-Guided Neurosurgery, Michael Jermyn, Yoann Gosselin, Pablo A. Valdes, Mira Sibai, Kolbein Kolste Nov 2015

Improved Sensitivity To Fluorescence For Cancer Detection In Wide-Field Image-Guided Neurosurgery, Michael Jermyn, Yoann Gosselin, Pablo A. Valdes, Mira Sibai, Kolbein Kolste

Dartmouth Scholarship

In glioma surgery, Protoporphyrin IX (PpIX) fluorescence may identify residual tumor that could be resected while minimizing damage to normal brain. We demonstrate that improved sensitivity for wide-field spectroscopic fluorescence imaging is achieved with minimal disruption to the neurosurgical workflow using an electron-multiplying charge-coupled device (EMCCD) relative to a state-of-the-art CMOS system. In phantom experiments the EMCCD system can detect at least two orders-of-magnitude lower PpIX. Ex vivo tissue imaging on a rat glioma model demonstrates improved fluorescence contrast compared with neurosurgical fluorescence microscope technology, and the fluorescence detection is confirmed with measurements from a clinically-validated spectroscopic probe. Greater PpIX …


Calibration And Optimization Of 3d Digital Breast Tomosynthesis Guided Near Infrared Spectral Tomography, Kelly E. Michaelsen, Venkataramanan Krishnaswamy, Linxi Shi, Srinivasan Vedantham, Steven Poplack, Andrew Karellas, Brian Pogue, Keith Paulsen Nov 2015

Calibration And Optimization Of 3d Digital Breast Tomosynthesis Guided Near Infrared Spectral Tomography, Kelly E. Michaelsen, Venkataramanan Krishnaswamy, Linxi Shi, Srinivasan Vedantham, Steven Poplack, Andrew Karellas, Brian Pogue, Keith Paulsen

Dartmouth Scholarship

Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. …


Review Of Fluorescence Guided Surgery Visualization And Overlay Techniques, Jonathan T. Elliott, Alisha V. Dsouza, Scott C. Davis, Jonathan D. Olson, Keith Paulsen, David Roberts, Brian Pogue Sep 2015

Review Of Fluorescence Guided Surgery Visualization And Overlay Techniques, Jonathan T. Elliott, Alisha V. Dsouza, Scott C. Davis, Jonathan D. Olson, Keith Paulsen, David Roberts, Brian Pogue

Dartmouth Scholarship

In fluorescence guided surgery, data visualization represents a critical step between signal capture and display needed for clinical decisions informed by that signal. The diversity of methods for displaying surgical images are reviewed, and a particular focus is placed on electronically detected and visualized signals, as required for near-infrared or low concentration tracers. Factors driving the choices such as human perception, the need for rapid decision making in a surgical environment, and biases induced by display choices are outlined. Five practical suggestions are outlined for optimal display orientation, color map, transparency/alpha function, dynamic range compression, and color perception check.


Review Of Biomedical Čerenkov Luminescence Imaging Applications, Kaveh Tanha, Ali Mahmoud Pashazadeh, Brian W. Pogue Aug 2015

Review Of Biomedical Čerenkov Luminescence Imaging Applications, Kaveh Tanha, Ali Mahmoud Pashazadeh, Brian W. Pogue

Dartmouth Scholarship

Čerenkov radiation is a fascinating optical signal, which has been exploited for unique diagnostic biological sensing and imaging, with significantly expanded use just in the last half decade. Čerenkov Luminescence Imaging (CLI) has desirable capabilities for niche applications, using specially designed measurement systems that report on radiation distributions, radiotracer and nanoparticle concentrations, and are directly applied to procedures such as medicine assessment, endoscopy, surgery, quality assurance and dosimetry. When compared to the other imaging tools such as PET and SPECT, CLI can have the key advantage of lower cost, higher throughput and lower imaging time. CLI can also provide imaging …


Next-Generation Raman Tomography Instrument For Non-Invasive In Vivo Bone Imaging, Jennifer-Lynn H. Demers, Francis W. L. Esmonde-White, Karen A. Esmonde-White, Michael D. Morris, Brian Pogue Feb 2015

Next-Generation Raman Tomography Instrument For Non-Invasive In Vivo Bone Imaging, Jennifer-Lynn H. Demers, Francis W. L. Esmonde-White, Karen A. Esmonde-White, Michael D. Morris, Brian Pogue

Dartmouth Scholarship

Combining diffuse optical tomography methods with Raman spectroscopy of tissue provides the ability for in vivo measurements of chemical and molecular characteristics, which have the potential for being useful in diagnostic imaging. In this study a system for Raman tomography was developed and tested. A third generation microCT coupled system was developed to combine 10 detection fibers and 5 excitation fibers with laser line filtering and a Cytop reference signal. Phantom measurements of hydroxyapatite concentrations from 50 to 300 mg/ml had a linear response. Fiber placement and experiment design was optimized using cadaver animals with live animal measurements acquired to …


Quantitative Spatial Frequency Fluorescence Imaging In The Sub-Diffusive Domain For Image-Guided Glioma Resection, Mira Sibai, Israel Veilleux, Jonathan T. Elliott, Frederic Leblond, Brian Wilson Jan 2015

Quantitative Spatial Frequency Fluorescence Imaging In The Sub-Diffusive Domain For Image-Guided Glioma Resection, Mira Sibai, Israel Veilleux, Jonathan T. Elliott, Frederic Leblond, Brian Wilson

Dartmouth Scholarship

Intraoperative 5- aminolevulinic acid induced-Protoporphyrin IX (PpIX) fluorescence guidance enables maximum safe resection of glioblastomas by providing surgeons with real-time tumor optical contrast. However, visual assessment of PpIX fluorescence is subjective and limited by the distorting effects of light attenuation and tissue autofluorescence. We have previously shown that non-invasive point measurements of absolute PpIX concentration identifies residual tumor that is otherwise non-detectable. Here, we extend this approach to wide-field quantitative fluorescence imaging by implementing spatial frequency domain imaging to recover tissue optical properties across the field-of-view in phantoms and ex vivo tissue.


Sensitivity Of Mri-Guided Near-Infrared Spectroscopy Clinical Breast Exam Data And Its Impact On Diagnostic Performance, Michael A. Mastanduno, Junqing Xu, Fadi El-Ghussein, Shudong Jiang, Hong Yin, Yan Zhao, Kelly E. Michaelson, Ke Wang, Fang Ren, Brian W. Pogue, Keith D. Paulsen Aug 2014

Sensitivity Of Mri-Guided Near-Infrared Spectroscopy Clinical Breast Exam Data And Its Impact On Diagnostic Performance, Michael A. Mastanduno, Junqing Xu, Fadi El-Ghussein, Shudong Jiang, Hong Yin, Yan Zhao, Kelly E. Michaelson, Ke Wang, Fang Ren, Brian W. Pogue, Keith D. Paulsen

Dartmouth Scholarship

In this study, data from breast MRI-guided near infrared spectroscopy (NIRS) exams delivered to 44 patients scheduled for surgical resection (ending in 16 benign and 28 malignant diagnoses) were analyzed using a spatial sensitivity metric to quantify the adequacy of the optical measurements for interrogating the tumor region of interest, as derived from the concurrent MRI scan. Along with positional sensitivity, the incorporation of spectral priors and the selection of an appropriate regularization parameter in the image reconstruction were considered, and found to influence the diagnostic accuracy of the recovered images. Once optimized, the MRI/NIRS data was able to differentiate …


Extraction Of Intrinsic Fluorescence From Single Fiber Fluorescence Measurements On A Turbid Medium: Experimental Validation, U. A. Gamm, C. L. Hoy, F. Van Leeuwen - Van Zaane, H. J. C. M. Sterenborg, S. C. Kanick, D J. Robinson, A. Amelink May 2014

Extraction Of Intrinsic Fluorescence From Single Fiber Fluorescence Measurements On A Turbid Medium: Experimental Validation, U. A. Gamm, C. L. Hoy, F. Van Leeuwen - Van Zaane, H. J. C. M. Sterenborg, S. C. Kanick, D J. Robinson, A. Amelink

Dartmouth Scholarship

Abstract

The detailed mechanisms associated with the influence of scattering and absorption properties on the fluorescence intensity sampled by a single optical fiber have recently been elucidated based on Monte Carlo simulated data. Here we develop an experimental single fiber fluorescence (SFF) spectroscopy setup and validate the Monte Carlo data and semi-empirical model equation that describes the SFF signal as a function of scattering. We present a calibration procedure that corrects the SFF signal for all system-related, wavelength dependent transmission efficiencies to yield an absolute value of intrinsic fluorescence. The validity of the Monte Carlo data and semi-empirical model is …


Advances In Optics For Biotechnology, Medicine And Surgery, Maryann Fitzmaurice, Brian W. Pogue, Guillermo J. Tearney, James W. Tunnell Jan 2014

Advances In Optics For Biotechnology, Medicine And Surgery, Maryann Fitzmaurice, Brian W. Pogue, Guillermo J. Tearney, James W. Tunnell

Dartmouth Scholarship

The guest editors introduce a Biomedical Optics Express feature issue that includes contributions from participants at the 2013 conference on Advances in Optics for Biotechnology, Medicine and Surgery XIII.


Spectral Discrimination Of Breast Pathologies In Situ Using Spatial Frequency Domain Imaging, Ashley M. Laughney, Venkataramanan Krishnaswamy, Elizabeth J. Rizzo, Mary C. Schwab, Richard J. Barth, David J. Cuccia, Bruce J. Tromberg, Keith D. Paulsen, Brian W. Pogue, Wendy A. Wells Aug 2013

Spectral Discrimination Of Breast Pathologies In Situ Using Spatial Frequency Domain Imaging, Ashley M. Laughney, Venkataramanan Krishnaswamy, Elizabeth J. Rizzo, Mary C. Schwab, Richard J. Barth, David J. Cuccia, Bruce J. Tromberg, Keith D. Paulsen, Brian W. Pogue, Wendy A. Wells

Dartmouth Scholarship

Introduction: Nationally, 25% to 50% of patients undergoing lumpectomy for local management of breast cancer require a secondary excision because of the persistence of residual tumor. Intraoperative assessment of specimen margins by frozen-section analysis is not widely adopted in breast-conserving surgery. Here, a new approach to wide-field optical imaging of breast pathology in situ was tested to determine whether the system could accurately discriminate cancer from benign tissues before routine pathological processing.


Dynamic Dual-Tracer Mri-Guided Fluorescence Tomography To Quantify Receptor Density In Vivo, Scott C. Davis, Kimberley S. Samkoe, Kenneth M. Tichauer, Kristian J. Sexton, Jason R. Gunn, Sophie J. Deharvengt, Tayyaba Hasan, Brian W. Pogue May 2013

Dynamic Dual-Tracer Mri-Guided Fluorescence Tomography To Quantify Receptor Density In Vivo, Scott C. Davis, Kimberley S. Samkoe, Kenneth M. Tichauer, Kristian J. Sexton, Jason R. Gunn, Sophie J. Deharvengt, Tayyaba Hasan, Brian W. Pogue

Dartmouth Scholarship

The up-regulation of cell surface receptors has become a central focus in personalized cancer treatment; however, because of the complex nature of contrast agent pharmacokinetics in tumor tissue, methods to quantify receptor binding in vivo remain elusive. Here, we present a dual-tracer optical technique for noninvasive estimation of specific receptor binding in cancer. A multispectral MRI-coupled fluorescence molecular tomography system was used to image the uptake kinetics of two fluorescent tracers injected simultaneously, one tracer targeted to the receptor of interest and the other tracer a nontargeted reference. These dynamic tracer data were then fit to a dual-tracer compartmental model …


Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue Jan 2013

Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1 x 1 cm² square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the …


Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging, Pablo A. Valdés, Frederic Leblond, Valerie L. Jacobs, Brian C. Wilson, Keith D. Paulsen, David W. Roberts Nov 2012

Quantitative, Spectrally-Resolved Intraoperative Fluorescence Imaging, Pablo A. Valdés, Frederic Leblond, Valerie L. Jacobs, Brian C. Wilson, Keith D. Paulsen, David W. Roberts

Dartmouth Scholarship

Intraoperative visual fluorescence imaging (vFI) has emerged as a promising aid to surgical guidance, but does not fully exploit the potential of the fluorescent agents that are currently available. Here, we introduce a quantitative fluorescence imaging (qFI) approach that converts spectrally-resolved data into images of absolute fluorophore concentration pixel-by-pixel across the surgical field of view (FOV). The resulting estimates are linear, accurate, and precise relative to true values, and spectral decomposition of multiple fluorophores is also achieved. Experiments with protoporphyrin IX in a glioma rodent model demonstrate in vivo quantitative and spectrally-resolved fluorescence imaging of infiltrating tumor margins for the …


A Digital X-Ray Tomosynthesis Coupled Near Infrared Spectral Tomography System For Dual-Modality Breast Imaging, Venkataramanan Krishnaswamy, Kelly E. Michaelsen, Brian W. Pogue, Steven P. Poplack, Ian Shaw, Ken Defrietas, Ken Brooks, Keith D. Paulsen Aug 2012

A Digital X-Ray Tomosynthesis Coupled Near Infrared Spectral Tomography System For Dual-Modality Breast Imaging, Venkataramanan Krishnaswamy, Kelly E. Michaelsen, Brian W. Pogue, Steven P. Poplack, Ian Shaw, Ken Defrietas, Ken Brooks, Keith D. Paulsen

Dartmouth Scholarship

A Near Infrared Spectral Tomography (NIRST) system has been developed and integrated into a commercial Digital Breast Tomosynthesis (DBT) scanner to allow structural and functional imaging of breast in vivo. The NIRST instrument uses an 8-wavelength continuous wave (CW) laser-based scanning source assembly and a 75-element silicon photodiode solid-state detector panel to produce dense spectral and spatial projection data from which spectrally constrained 3D tomographic images of tissue chromophores are produced. Integration of the optical imaging system into the DBT scanner allows direct co-registration of the optical and DBT images, while also facilitating the synergistic use of x-ray contrast as …


Measurement Of The Oxidation State Of Mitochondrial Cytochrome C From The Neocortex Of The Mammalian Brain, Y. Sakata, M. Abajian, M. O. Ripple, R. Springett Aug 2012

Measurement Of The Oxidation State Of Mitochondrial Cytochrome C From The Neocortex Of The Mammalian Brain, Y. Sakata, M. Abajian, M. O. Ripple, R. Springett

Dartmouth Scholarship

Diffuse optical remission spectra from the mammalian neocortex at visible wavelengths contain spectral features originating from the mitochondria. A new algorithm is presented, based on analytically relating the first differential of the attenuation spectrum to the first differential of the chromophore spectra, that can separate and calculate the oxidation state of cytochrome c as well as the absolute concentration and saturation of hemoglobin. The algorithm is validated in phantoms and then tested on the neocortex of the rat during an anoxic challenge. Implementation of the algorithm will provide detailed information of mitochondrial oxygenation and mitochondrial function in physiological studies of …


Quantitative Cherenkov Emission Spectroscopy For Tissue Oxygenation Assessment, Johan Axelsson, Adam K. Glaser, David J. Gladstone, Brian W. Pogue Feb 2012

Quantitative Cherenkov Emission Spectroscopy For Tissue Oxygenation Assessment, Johan Axelsson, Adam K. Glaser, David J. Gladstone, Brian W. Pogue

Dartmouth Scholarship

Measurements of Cherenkov emission in tissue during radiation therapy are shown to enable estimation of hemoglobin oxygen saturation non-invasively, through spectral fitting of the spontaneous emissions from the treated tissue. Tissue oxygenation plays a critical role in the efficacy of radiation therapy to kill tumor tissue. Yet in-vivo measurement of this has remained elusive in routine use because of the complexity of oxygen measurement techniques. There is a spectrally broad emission of Cherenkov light that is induced during the time of irradiation, and as this travels through tissue from the point of the radiation deposition, the tissue absorption and scatter …


Characterizing Accuracy Of Total Hemoglobin Recovery Using Contrast-Detail Analysis In 3d Image-Guided Near Infrared Spectroscopy With The Boundary Element Method, Hamid R. Ghadyani, Subhadra Srinivasan, Brian W. Pogue, Keith D. Paulsen Jul 2010

Characterizing Accuracy Of Total Hemoglobin Recovery Using Contrast-Detail Analysis In 3d Image-Guided Near Infrared Spectroscopy With The Boundary Element Method, Hamid R. Ghadyani, Subhadra Srinivasan, Brian W. Pogue, Keith D. Paulsen

Dartmouth Scholarship

The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically …


Automatic Exposure Control And Estimation Of Effective System Noise In Diffuse Fluorescence Tomography, Dax L. Kepshire, Hamid Dehghani, Frederic Leblond, Brian W. Pogue Dec 2009

Automatic Exposure Control And Estimation Of Effective System Noise In Diffuse Fluorescence Tomography, Dax L. Kepshire, Hamid Dehghani, Frederic Leblond, Brian W. Pogue

Dartmouth Scholarship

A diffuse fluorescence tomography system, based upon time-correlated single photon counting, is presented with an automated algorithm to allow dynamic range variation through exposure control. This automated exposure control allows the upper and lower detection levels of fluorophore to be extended by an order of magnitude beyond the previously published performance and benefits in a slight decrease in system effective noise. The effective noise level is used as a metric to characterize the system performance, integrating both model-mismatch and calibration bias errors into a single parameter. This effective error is near 7% of the reconstructed fluorescent yield value, when imaging …


Statistical Hypothesis Testing For Postreconstructed And Postregistered Medical Images, Eugene Demidenko Oct 2009

Statistical Hypothesis Testing For Postreconstructed And Postregistered Medical Images, Eugene Demidenko

Dartmouth Scholarship

Postreconstructed and postregistered medical images are typically treated as the raw data, implicitly assuming that those operations are error free. We question this assumption and explore how the precision of reconstruction and affine registration can be assessed by the image covariance matrix and confidence interval, called the confidence eigenimage, using a statistical model-based approach. Various hypotheses may be tested after image reconstruction and registration using classical statistical hypothesis testing vehicles: Is there a statistically significant difference between images? Does the intensity at a specific location or area of interest belong to the “normal” range? Is there a tumor? Does the …


In Vitro Ovarian Tumor Growth And Treatment Response Dynamics Visualized With Time-Lapse Oct Imaging, Conor L. Evans, Imran Rizvi, Tayyaba Hasan, Johannes F. De Boer Mar 2009

In Vitro Ovarian Tumor Growth And Treatment Response Dynamics Visualized With Time-Lapse Oct Imaging, Conor L. Evans, Imran Rizvi, Tayyaba Hasan, Johannes F. De Boer

Dartmouth Scholarship

In vitro three-dimensional models for metastatic ovarian cancer have been useful for recapitulating the human disease. These spheroidal tumor cultures, however, can grow in excess of 1 mm in diameter, which are difficult to visualize without suitable imaging technology.Optical coherence tomography (OCT) is an ideal live imaging method for non-perturbatively visualizing these complex systems. OCT enabled detailed observations of the model at both nodular and cellular levels, revealing growth dynamics not previously observed. The development of a time-lapse OCT system, capable of automated, multidimensional acquisition, further provided insights into the growth and chemotherapeutic response of ovarian cancer.


Methodology Development For Three-Dimensional Mr-Guided Near Infrared Spectroscopy Of Breast Tumors, Colin M. Carpenter, Subhadra Srinivasan, Brian W. Pogue, Keith D. Paulsen Oct 2008

Methodology Development For Three-Dimensional Mr-Guided Near Infrared Spectroscopy Of Breast Tumors, Colin M. Carpenter, Subhadra Srinivasan, Brian W. Pogue, Keith D. Paulsen

Dartmouth Scholarship

Combined Magnetic Resonance (MR) and Near Infrared Spectroscopy (NIRS) has been proposed as a unique method to quantify hemodynamics, water content, and cellular size and packing density of breast tumors, as these tissue constituents can be quantified with increased resolution and overlaid on the structural features identified by the MR. However, the choices in how to reconstruct and visualize this information can have a dramatic impact on the feasibility of implementing this modality in the clinic. This is especially true in 3 dimensions, as there is often limited optical sampling of the breast tissue, and methods need to accurately reflect …


Image-Guided Raman Spectroscopic Recovery Of Canine Cortical Bone Contrast In Situ, Subhadra Srinivasan, Matthew Schulmerich, Jacqueline H. Cole, Kathryn Dooley, Jaclynn M. Kreider, Brian W. Pogue Aug 2008

Image-Guided Raman Spectroscopic Recovery Of Canine Cortical Bone Contrast In Situ, Subhadra Srinivasan, Matthew Schulmerich, Jacqueline H. Cole, Kathryn Dooley, Jaclynn M. Kreider, Brian W. Pogue

Dartmouth Scholarship

Raman scattering provides valuable biochemical and molecular markers for studying bone tissue composition with use in predicting fracture risk in osteoporosis. Raman tomography can image through a few centimeters of tissue but is limited by low spatial resolution. X-ray computed tomography (CT) imaging can provide high-resolution image-guidance of the Raman spectroscopic characterization, which enhances the quantitative recovery of the Raman signals, and this technique provides additional information to standard imaging methods. This hypothesis was tested in data measured from Teflon tissue phantoms and from a canine limb. Image-guided Raman spectroscopy (IG-RS) of the canine limb using CT images of the …


Fluorescence Tomography Characterization For Sub-Surface Imaging With Protoporphyrin Ix, Dax Kepshire, Scott C. Davis, Hamid Dehghani, Keith D. Paulsen, Brian W. Pogue Jun 2008

Fluorescence Tomography Characterization For Sub-Surface Imaging With Protoporphyrin Ix, Dax Kepshire, Scott C. Davis, Hamid Dehghani, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

Optical imaging of fluorescent objects embedded in a tissue simulating medium was characterized using non-contact based approaches to fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical tomography (FDOT). Using Protoporphyrin IX as a fluorescent agent, experiments were performed on tissue phantoms comprised of typical in-vivo tumor to normal tissue contrast ratios, ranging from 3.5:1 up to 10:1. It was found that tomographic imaging was able to recover interior inclusions with high contrast relative to the background; however, simple planar fluorescence imaging provided a superior contrast to noise ratio. Overall, FRI performed optimally when the object was located on or …


Imaging Breast Adipose And Fibroglandular Tissue Molecular Signatures By Using Hybrid Mri-Guided Near-Infrared Spectral Tomography, Ben Brooksby, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Subhadra Srinivasan, Christine Kogel, Tor D. Tosteson, John Weaver, Steven P. Poplack, Keith D. Paulsen Jun 2006

Imaging Breast Adipose And Fibroglandular Tissue Molecular Signatures By Using Hybrid Mri-Guided Near-Infrared Spectral Tomography, Ben Brooksby, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Subhadra Srinivasan, Christine Kogel, Tor D. Tosteson, John Weaver, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Magnetic resonance (MR)-guided near-infrared spectral tomography was developed and used to image adipose and fibroglandular breast tissue of 11 normal female subjects, recruited under an institutional review board-approved protocol. Images of hemoglobin, oxygen saturation, water fraction, and subcellular scattering were reconstructed and show that fibroglandular fractions of both blood and water are higher than in adipose tissue. Variation in adipose and fibroglandular tissue composition between individuals was not significantly different across the scattered and dense breast categories. Combined MR and near-infrared tomography provides fundamental molecular information about these tissue types with resolution governed by MR T1 images.


Automated Migration Analysis Based On Cell Texture: Method & Reliability, Jianfeng Qin, Thomas W. Chittenden, Ling Gao, Justin D D. Pearlman Mar 2005

Automated Migration Analysis Based On Cell Texture: Method & Reliability, Jianfeng Qin, Thomas W. Chittenden, Ling Gao, Justin D D. Pearlman

Dartmouth Scholarship

Background: In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS) on endothelial cell migration but has broader applications. The analysis has two stages: (1) preprocessing of image texture, and (2) migration analysis.

Results: The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading …


Interpreting Hemoglobin And Water Concentration, Oxygen Saturation, And Scattering Measured In Vivo By Near-Infrared Breast Tomography, Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Christine Kogel, Sandra Soho, Jennifer J. Gibson, Tor D. Tosteson, Steven P. Poplack, Keith D. Paulsen Oct 2003

Interpreting Hemoglobin And Water Concentration, Oxygen Saturation, And Scattering Measured In Vivo By Near-Infrared Breast Tomography, Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Christine Kogel, Sandra Soho, Jennifer J. Gibson, Tor D. Tosteson, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Near-infrared spectroscopic tomography was used to measure the properties of 24 mammographically normal breasts to quantify whole-breast absorption and scattering spectra and to evaluate which tissue composition characteristics can be determined from these spectra. The absorption spectrum of breast tissue allows quantification of (i) total hemoglobin concentration, (ii) hemoglobin oxygen saturation, and (iii) water concentration, whereas the scattering spectrum provides information about the size and number density of cellular components and structural matrix elements. These property data were tested for correlation to demographic information, including subject age, body mass index, breast size, and radiographic …