Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

The N-Terminal Methyltransferase Homologs Nrmt1 And Nrmt2 Exhibit Novel Regulation Of Activity Through Heterotrimer Formation., Jon David Faughn Aug 2018

The N-Terminal Methyltransferase Homologs Nrmt1 And Nrmt2 Exhibit Novel Regulation Of Activity Through Heterotrimer Formation., Jon David Faughn

Electronic Theses and Dissertations

Protein, DNA, and RNA methyltransferases have an ever-expanding list of novel substrates and catalytic activities. Even within families and between homologs, it is becoming clear the intricacies of methyltransferase specificity and regulation are far more diverse than originally thought. In addition to specific substrates and distinct methylation levels, methyltransferase activity can be altered through formation of complexes with close homologs. This work involves the N-terminal methyltransferase homologs NRMT1 and NRMT2. NRMT1 is a ubiquitously expressed distributive trimethylase. NRMT2 is a monomethylase expressed at low levels and in a tissue-specific manner. They are both nuclear methyltransferases with overlapping target consensus sequences …


Investigating The Impact Of Nrmt1 Cancer Mutants On Catalytic Specificity And The Dna Damage Response., Kaitlyn Marie Shields Aug 2018

Investigating The Impact Of Nrmt1 Cancer Mutants On Catalytic Specificity And The Dna Damage Response., Kaitlyn Marie Shields

Electronic Theses and Dissertations

Protein methylation is an established and critical posttranslational modification controlling multiple cellular events. Alterations in protein methylation have been implicated in many diseases, including cancer. My work focused on the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. Previous work proposed that NRMT2 assists NRMT1 by priming its substrates for trimethylation. Importantly, NRMT1 mutations have been found in cancers, and loss of NRMT1 has been shown to promote oncogenic phenotypes in cancer cells. Together, this suggests that altered activities of NRMT1/2 may play a role in cancer progression. Although NRMT1/2 are 50% identical, they differ in key aromatic residues in …