Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

From Dose To Response: In Vivo Nanoparticle Processing And Potential Toxicity, Uschi M. Graham, Gary Jacobs, Robert A. Yokel, Burtron H. Davis, Alan K. Dozier, M. Eileen Birch, Michael T. Tseng, Günter Oberdörster, Alison Elder, Lisa Delouise Jan 2017

From Dose To Response: In Vivo Nanoparticle Processing And Potential Toxicity, Uschi M. Graham, Gary Jacobs, Robert A. Yokel, Burtron H. Davis, Alan K. Dozier, M. Eileen Birch, Michael T. Tseng, Günter Oberdörster, Alison Elder, Lisa Delouise

Pharmaceutical Sciences Faculty Publications

Adverse human health impacts due to occupational and environmental exposures to manufactured nanoparticles are of concern and pose a potential threat to the continued industrial use and integration of nanomaterials into commercial products. This chapter addresses the inter-relationship between dose and response and will elucidate on how the dynamic chemical and physical transformation and breakdown of the nanoparticles at the cellular and subcellular levels can lead to the in vivo formation of new reaction products. The dose-response relationship is complicated by the continuous physicochemical transformations in the nanoparticles induced by the dynamics of the biological system, where dose, bio-processing, and …


Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski Jan 2017

Development Of Diverse Size And Shape Rna Nanoparticles And Investigation Of Their Physicochemical Properties For Optimized Drug Delivery, Daniel L. Jasinski

Theses and Dissertations--Pharmacy

RNA nanotechnology is an emerging field that holds great promise for advancing drug delivery and materials science. Recently, RNA nanoparticles have seen increased use as an in vivo delivery system. RNA was once thought to have little potential for in vivo use due to biological and thermodynamic stability issues. However, these issues have been solved by: (1) Finding of a thermodynamically stable three-way junction (3WJ) motif; (2) Chemical modifications to RNA confer enzymatic stability in vivo; and (3) the finding that RNA nanoparticles exhibit low immunogenicity in vivo.

In vivo biodistribution and pharmacokinetics are affected by the physicochemical …