Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Acquisition Of Functions On The Outer Capsid Surface During Evolution Of Double-Stranded Rna Fungal Viruses, Carlos P. Mata, Daniel Luque, Josué Gómez-Blanco, Javier M. Rodríguez, José M. González, Nobuhiro Suzuki, Said A. Ghabrial, José L. Carrascosa, Benes L. Trus, José R. Castón Dec 2017

Acquisition Of Functions On The Outer Capsid Surface During Evolution Of Double-Stranded Rna Fungal Viruses, Carlos P. Mata, Daniel Luque, Josué Gómez-Blanco, Javier M. Rodríguez, José M. González, Nobuhiro Suzuki, Said A. Ghabrial, José L. Carrascosa, Benes L. Trus, José R. Castón

Plant Pathology Faculty Publications

Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between …


Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters Nov 2017

Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters

Chemistry Faculty Publications

Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the …


Design, Synthesis, And Biological Activity Of 5'-Phenyl-1,2,5,6-Tetrahydro-3,3'-Bipyridine Analogues As Potential Antagonists Of Nicotinic Acetylcholine Receptors, Yafei Jin, Xiaoqin Huang, Roger L. Papke, Emily M. Jutkiewicz, Hollis D Showalter, Chang-Guo Zhan Sep 2017

Design, Synthesis, And Biological Activity Of 5'-Phenyl-1,2,5,6-Tetrahydro-3,3'-Bipyridine Analogues As Potential Antagonists Of Nicotinic Acetylcholine Receptors, Yafei Jin, Xiaoqin Huang, Roger L. Papke, Emily M. Jutkiewicz, Hollis D Showalter, Chang-Guo Zhan

Pharmaceutical Sciences Faculty Publications

Starting from a known non-specific agonist (1) of nicotinic acetylcholine receptors (nAChRs), rationally guided structural-based design resulted in the discovery of a small series of 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridines (3a – 3e) incorporating a phenyl ring off the pyridine core of 1. The compounds were synthesized via successive Suzuki couplings on a suitably functionalized pyridine starting monomer 4 to append phenyl and pyridyl substituents off the 3- and 5-positions, respectively, and then make subsequent modifications on the flanking pyridyl ring to provide target compounds. Compound 3a is a novel antagonist which is highly selective for α3β4 nAChR (Ki = 123 nM) …


Selective Inhibitors Of Human Mpges-1 From Structure-Based Computational Screening, Ziyuan Zhou, Yaxia Yuan, Shuo Zhou, Kai Ding, Fang Zheng, Chang-Guo Zhan Aug 2017

Selective Inhibitors Of Human Mpges-1 From Structure-Based Computational Screening, Ziyuan Zhou, Yaxia Yuan, Shuo Zhou, Kai Ding, Fang Zheng, Chang-Guo Zhan

Molecular Modeling and Biopharmaceutical Center Faculty Publications

Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs. Although various mPGES-1 inhibitors have been reported in literature, few have entered clinical trials and none has been proven clinically useful so far. It is highly desired for developing the next generation of therapeutics for inflammation-related diseases to design and discover novel inhibitors of mPGES-1 with new scaffolds. Here, we report the identification of a series of new, potent and selective inhibitors of human mPGES-1 with diverse scaffolds through combined computational and experimental studies. The computationally modeled binding structures of these new inhibitors with mPGES-1 provide …


Blocking An N-Terminal Acetylation-Dependent Protein Interaction Inhibits An E3 Ligase, Daniel C. Scott, Jared T. Hammill, Jaeki Min, David Y. Rhee, Michele Connelly, Vladislav O. Sviderskiy, Deepak Bhasin, Yizhe Chen, Su-Sien Ong, Sergio C. Chai, Asli N. Goktug, Guochang Huang, Julie K. Monda, Jonathan Low, Ho Shin Kim, Joao A. Paulo, Joe R. Cannon, Anang A. Shelat, Taosheng Chen, Ian R. Kelsall, Arno F. Alpi, Vishwajeeth Pagala, Xusheng Wang, Junmin Peng, Bhuvanesh Singh, J. Wade Harper, Brenda A. Schulman, R. Kiplin Guy Aug 2017

Blocking An N-Terminal Acetylation-Dependent Protein Interaction Inhibits An E3 Ligase, Daniel C. Scott, Jared T. Hammill, Jaeki Min, David Y. Rhee, Michele Connelly, Vladislav O. Sviderskiy, Deepak Bhasin, Yizhe Chen, Su-Sien Ong, Sergio C. Chai, Asli N. Goktug, Guochang Huang, Julie K. Monda, Jonathan Low, Ho Shin Kim, Joao A. Paulo, Joe R. Cannon, Anang A. Shelat, Taosheng Chen, Ian R. Kelsall, Arno F. Alpi, Vishwajeeth Pagala, Xusheng Wang, Junmin Peng, Bhuvanesh Singh, J. Wade Harper, Brenda A. Schulman, R. Kiplin Guy

Pharmaceutical Sciences Faculty Publications

N-terminal acetylation is an abundant modification influencing protein functions. Because ∼80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors are …


Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried Jul 2017

Quaternary Interactions And Supercoiling Modulate The Cooperative Dna Binding Of Agt, Manana Melikishvili, Michael G. Fried

Center for Structural Biology Faculty Publications

Human O6-alkylguanine-DNA alkyltransferase (AGT) repairs mutagenic O6-alkylguanine and O4-alkylthymine adducts in single-stranded and duplex DNAs. The search for these lesions, through a vast excess of competing, unmodified genomic DNA, is a mechanistic challenge that may limit the repair rate in vivo. Here, we examine influences of DNA secondary structure and twist on protein–protein interactions in cooperative AGT complexes formed on lesion-free DNAs that model the unmodified parts of the genome. We used a new approach to resolve nearest neighbor (nn) and long-range (lr) components from the ensemble-average cooperativity, ωave. We found …


Structure And Specificity Of A Permissive Bacterial C-Prenyltransferase, Sherif I. Elshahawi, Hongnan Cao, Khaled A. Shaaban, Larissa V. Ponomareva, Thangaiah Subramanian, Mark L. Farman, H. Peter Spielmann, George N. Phillips Jr., Jon S. Thorson, Shanteri Singh Apr 2017

Structure And Specificity Of A Permissive Bacterial C-Prenyltransferase, Sherif I. Elshahawi, Hongnan Cao, Khaled A. Shaaban, Larissa V. Ponomareva, Thangaiah Subramanian, Mark L. Farman, H. Peter Spielmann, George N. Phillips Jr., Jon S. Thorson, Shanteri Singh

Pharmaceutical Sciences Faculty Publications

This study highlights the biochemical and structural characterization of the L-tryptophan C6 C-prenyltransferase (C-PT) PriB from Streptomyces sp. RM-5-8. PriB was found to be uniquely permissive to a diverse array of prenyl donors and acceptors including daptomycin. Two additional PTs also produced novel prenylated daptomycins with improved antibacterial activities over the parent drug.