Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Microglial P38Α Mapk Is Critical For Lps-Induced Neuron Degeneration, Through A Mechanism Involving Tnfα, Bin Xing, Adam D. Bachstetter, Linda J. Van Eldik Dec 2011

Microglial P38Α Mapk Is Critical For Lps-Induced Neuron Degeneration, Through A Mechanism Involving Tnfα, Bin Xing, Adam D. Bachstetter, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: The p38α MAPK isoform is a well-established therapeutic target in peripheral inflammatory diseases, but the importance of this kinase in pathological microglial activation and detrimental inflammation in CNS disorders is less well understood. To test the role of the p38α MAPK isoform in microglia-dependent neuron damage, we used primary microglia from wild-type (WT) or p38α MAPK conditional knockout (KO) mice in co-culture with WT cortical neurons, and measured neuron damage after LPS insult.

RESULTS: We found that neurons in co-culture with p38α-deficient microglia were protected against LPS-induced synaptic loss, neurite degeneration, and neuronal death. The involvement of the proinflammatory …


Rna Oxidation Adducts 8-Ohg And 8-Oha Change With Aβ42 Levels In Late-Stage Alzheimer's Disease, Adam M. Weidner, Melissa A. Bradley, Tina L. Beckett, Dana M. Niedowicz, Amy L.S. Dowling, Sergey V. Matveev, Harry Levine, Mark A. Lovell, M. Paul Murphy Sep 2011

Rna Oxidation Adducts 8-Ohg And 8-Oha Change With Aβ42 Levels In Late-Stage Alzheimer's Disease, Adam M. Weidner, Melissa A. Bradley, Tina L. Beckett, Dana M. Niedowicz, Amy L.S. Dowling, Sergey V. Matveev, Harry Levine, Mark A. Lovell, M. Paul Murphy

Sanders-Brown Center on Aging Faculty Publications

While research supports amyloid-β (Aβ) as the etiologic agent of Alzheimer's disease (AD), the mechanism of action remains unclear. Evidence indicates that adducts of RNA caused by oxidation also represent an early phenomenon in AD. It is currently unknown what type of influence these two observations have on each other, if any. We quantified five RNA adducts by gas chromatography/mass spectroscopy across five brain regions from AD cases and age-matched controls. We then used a reductive directed analysis to compare the RNA adducts to common indices of AD neuropathology and various pools of Aβ. Using data from four disease-affected brain …