Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Thomas Jefferson University

Female

Department of Neuroscience Faculty Papers

Articles 1 - 8 of 8

Full-Text Articles in Medicine and Health Sciences

A Mouse Model With Widespread Expression Of The C9orf72-Linked Glycine-Arginine Dipeptide Displays Non-Lethal Als/Ftd-Like Phenotypes, Brandie Morris Verdone, Maria Elena Cicardi, Xinmei Wen, Sindhu Sriramoji, Katelyn Russell, Shashirekha S Markandaiah, Brigid K Jensen, Karthik Krishnamurthy, Aaron R. Haeusler, Piera Pasinelli, Davide Trotti Apr 2022

A Mouse Model With Widespread Expression Of The C9orf72-Linked Glycine-Arginine Dipeptide Displays Non-Lethal Als/Ftd-Like Phenotypes, Brandie Morris Verdone, Maria Elena Cicardi, Xinmei Wen, Sindhu Sriramoji, Katelyn Russell, Shashirekha S Markandaiah, Brigid K Jensen, Karthik Krishnamurthy, Aaron R. Haeusler, Piera Pasinelli, Davide Trotti

Department of Neuroscience Faculty Papers

Translation of the hexanucleotide G4C2 expansion associated with C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) produces five different dipeptide repeat protein (DPR) species that can confer toxicity. There is yet much to learn about the contribution of a single DPR to disease pathogenesis. We show here that a short repeat length is sufficient for the DPR poly-GR to confer neurotoxicity in vitro, a phenomenon previously unobserved. This toxicity is also reported in vivo in our novel knock-in mouse model characterized by widespread central nervous system (CNS) expression of the short-length poly-GR. We observe sex-specific chronic ALS/FTD-like phenotypes in these …


Rabies Screen Reveals Gpe Control Of Cocaine-Triggered Plasticity., Kevin T. Beier, Christina K. Kim, Paul Hoerbelt, Lin Wai Hung, Boris D. Heifets, Katherine E. Deloach, Timothy J. Mosca, Sophie Neuner, Karl Deisseroth, Liqun Luo, Robert C. Malenka Sep 2017

Rabies Screen Reveals Gpe Control Of Cocaine-Triggered Plasticity., Kevin T. Beier, Christina K. Kim, Paul Hoerbelt, Lin Wai Hung, Boris D. Heifets, Katherine E. Deloach, Timothy J. Mosca, Sophie Neuner, Karl Deisseroth, Liqun Luo, Robert C. Malenka

Department of Neuroscience Faculty Papers

Identification of neural circuit changes that contribute to behavioural plasticity has routinely been conducted on candidate circuits that were preselected on the basis of previous results. Here we present an unbiased method for identifying experience-triggered circuit-level changes in neuronal ensembles in mice. Using rabies virus monosynaptic tracing, we mapped cocaine-induced global changes in inputs onto neurons in the ventral tegmental area. Cocaine increased rabies-labelled inputs from the globus pallidus externus (GPe), a basal ganglia nucleus not previously known to participate in behavioural plasticity triggered by drugs of abuse. We demonstrated that cocaine increased GPe neuron activity, which accounted for the …


Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K(+) Channel Dysfunction In Drg Neurons., Benjamin M. Zemel, Tanziyah Muqeem, Eric V. Brown, Miguel Goulão, Mark W Urban, Stephen R. Tymanskyj, Angelo C. Lepore, Manuel Covarrubias Aug 2017

Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K(+) Channel Dysfunction In Drg Neurons., Benjamin M. Zemel, Tanziyah Muqeem, Eric V. Brown, Miguel Goulão, Mark W Urban, Stephen R. Tymanskyj, Angelo C. Lepore, Manuel Covarrubias

Department of Neuroscience Faculty Papers

Dysfunction of the fast-inactivating Kv3.4 potassium current in dorsal root ganglion (DRG) neurons contributes to the hyperexcitability associated with persistent pain induced by spinal cord injury (SCI). However, the underlying mechanism is not known. In light of our previous work demonstrating modulation of the Kv3.4 channel by phosphorylation, we investigated the role of the phosphatase calcineurin (CaN) using electrophysiological, molecular, and imaging approaches in adult female Sprague Dawley rats. Pharmacological inhibition of CaN in small-diameter DRG neurons slowed repolarization of the somatic action potential (AP) and attenuated the Kv3.4 current. Attenuated Kv3.4 currents also exhibited slowed inactivation. We observed similar …


Map7 Regulates Axon Collateral Branch Development In Dorsal Root Ganglion Neurons., Stephen R Tymanskyj, Benjamin Yang, Aditi Falnikar, Angelo C Lepore, Le Ma Feb 2017

Map7 Regulates Axon Collateral Branch Development In Dorsal Root Ganglion Neurons., Stephen R Tymanskyj, Benjamin Yang, Aditi Falnikar, Angelo C Lepore, Le Ma

Department of Neuroscience Faculty Papers

Collateral branches from axons are key components of functional neural circuits that allow neurons to connect with multiple synaptic targets. Like axon growth and guidance, formation of collateral branches depends on the regulation of microtubules, but how such regulation is coordinated to ensure proper circuit development is not known. Based on microarray analysis, we have identified a role for microtubule-associated protein 7 (MAP7) during collateral branch development of dorsal root ganglion (DRG) sensory neurons. We show that MAP7 is expressed at the onset of collateral branch formation. Perturbation of its expression by overexpression or shRNA knockdown alters axon branching in …


Loss Of Vglut3 Produces Circadian-Dependent Hyperdopaminergia And Ameliorates Motor Dysfunction And L-Dopa-Mediated Dyskinesias In A Model Of Parkinson's Disease., Christopher B. Divito, Kathy Steece-Collier, Daniel T. Case, Sean-Paul G. Williams, Jennifer A. Stancati, Lianteng Zhi, Maria E. Rubio, Caryl E. Sortwell, Timothy J. Collier, David Sulzer, Robert H. Edwards, Hui Zhang, Rebecca P. Seal Nov 2015

Loss Of Vglut3 Produces Circadian-Dependent Hyperdopaminergia And Ameliorates Motor Dysfunction And L-Dopa-Mediated Dyskinesias In A Model Of Parkinson's Disease., Christopher B. Divito, Kathy Steece-Collier, Daniel T. Case, Sean-Paul G. Williams, Jennifer A. Stancati, Lianteng Zhi, Maria E. Rubio, Caryl E. Sortwell, Timothy J. Collier, David Sulzer, Robert H. Edwards, Hui Zhang, Rebecca P. Seal

Department of Neuroscience Faculty Papers

UNLABELLED: The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion …


Human Ips Cell-Derived Astrocyte Transplants Preserve Respiratory Function After Spinal Cord Injury., Ke Li, Elham Javed, Daniel Scura, Tamara J. Hala, Suneil Seetharam, Aditi Falnikar, Jean-Philippe Richard, Ashley Chorath, Nicholas J. Maragakis, Megan C. Wright, Angelo C. Lepore Sep 2015

Human Ips Cell-Derived Astrocyte Transplants Preserve Respiratory Function After Spinal Cord Injury., Ke Li, Elham Javed, Daniel Scura, Tamara J. Hala, Suneil Seetharam, Aditi Falnikar, Jean-Philippe Richard, Ashley Chorath, Nicholas J. Maragakis, Megan C. Wright, Angelo C. Lepore

Department of Neuroscience Faculty Papers

Transplantation-based replacement of lost and/or dysfunctional astrocytes is a promising therapy for spinal cord injury (SCI) that has not been extensively explored, despite the integral roles played by astrocytes in the central nervous system (CNS). Induced pluripotent stem (iPS) cells are a clinically-relevant source of pluripotent cells that both avoid ethical issues of embryonic stem cells and allow for homogeneous derivation of mature cell types in large quantities, potentially in an autologous fashion. Despite their promise, the iPS cell field is in its infancy with respect to evaluating in vivo graft integration and therapeutic efficacy in SCI models. Astrocytes express …


Synchronous And Asynchronous Theta And Gamma Activity During Episodic Memory Formation., John F Burke, Kareem A Zaghloul, Joshua Jacobs, Ryan B Williams, Michael R Sperling, Ashwini D Sharan, Michael J Kahana Jan 2013

Synchronous And Asynchronous Theta And Gamma Activity During Episodic Memory Formation., John F Burke, Kareem A Zaghloul, Joshua Jacobs, Ryan B Williams, Michael R Sperling, Ashwini D Sharan, Michael J Kahana

Department of Neuroscience Faculty Papers

To test the hypothesis that neural oscillations synchronize to mediate memory encoding, we analyzed electrocorticographic recordings taken as 68 human neurosurgical patients studied and subsequently recalled lists of common words. To the extent that changes in spectral power reflect synchronous oscillations, we would expect those power changes to be accompanied by increases in phase synchrony between the region of interest and neighboring brain areas. Contrary to the hypothesized role of synchronous gamma oscillations in memory formation, we found that many key regions that showed power increases during successful memory encoding also exhibited decreases in global synchrony. Similarly, cortical theta activity …


Human Glial-Restricted Progenitor Transplantation Into Cervical Spinal Cord Of The Sod1 Mouse Model Of Als., Angelo C Lepore, John O'Donnell, Andrew S Kim, Timothy Williams, Alicia Tuteja, Mahendra S Rao, Linda L Kelley, James T Campanelli, Nicholas J Maragakis Oct 2011

Human Glial-Restricted Progenitor Transplantation Into Cervical Spinal Cord Of The Sod1 Mouse Model Of Als., Angelo C Lepore, John O'Donnell, Andrew S Kim, Timothy Williams, Alicia Tuteja, Mahendra S Rao, Linda L Kelley, James T Campanelli, Nicholas J Maragakis

Department of Neuroscience Faculty Papers

Cellular abnormalities are not limited to motor neurons in amyotrophic lateral sclerosis (ALS). There are numerous observations of astrocyte dysfunction in both humans with ALS and in SOD1(G93A) rodents, a widely studied ALS model. The present study therapeutically targeted astrocyte replacement in this model via transplantation of human Glial-Restricted Progenitors (hGRPs), lineage-restricted progenitors derived from human fetal neural tissue. Our previous findings demonstrated that transplantation of rodent-derived GRPs into cervical spinal cord ventral gray matter (in order to target therapy to diaphragmatic function) resulted in therapeutic efficacy in the SOD1(G93A) rat. Those findings demonstrated the feasibility and efficacy of transplantation-based …