Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Multiple Domains In Siz Sumo Ligases Contribute To Substrate Selectivity., Alison Reindle, Irina Belichenko, Gwendolyn R Bylebyl, Xiaole L Chen, Nishant Gandhi, Erica S Johnson Nov 2006

Multiple Domains In Siz Sumo Ligases Contribute To Substrate Selectivity., Alison Reindle, Irina Belichenko, Gwendolyn R Bylebyl, Xiaole L Chen, Nishant Gandhi, Erica S Johnson

Department of Biochemistry and Molecular Biology Faculty Papers

Saccharomyces cerevisiae contains two Siz/PIAS SUMO E3 ligases, Siz1 and Siz2/Nfi1, and one other known ligase, Mms21. Although ubiquitin ligases are highly substrate-specific, the degree to which SUMO ligases target distinct sets of substrates is unknown. Here we show that although Siz1 and Siz2 each have unique substrates in vivo, sumoylation of many substrates can be stimulated by either protein. Furthermore, in the absence of both Siz proteins, many of the same substrates are still sumoylated at low levels. Some of this residual sumoylation depends on MMS21. Siz1 targets its unique substrates through at least two distinct domains. Sumoylation of …


P5l Mutation In Ank Results In An Increase In Extracellular Inorganic Pyrophosphate During Proliferation And Nonmineralizing Hypertrophy In Stably Transduced Atdc5 Cells, Raihana Zaka, David Stokes, Arnold S. Dion, Anna Kusnierz, Fei Han, Charlene J. Williams Oct 2006

P5l Mutation In Ank Results In An Increase In Extracellular Inorganic Pyrophosphate During Proliferation And Nonmineralizing Hypertrophy In Stably Transduced Atdc5 Cells, Raihana Zaka, David Stokes, Arnold S. Dion, Anna Kusnierz, Fei Han, Charlene J. Williams

Center for Translational Medicine Faculty Papers

Ank is a multipass transmembrane protein that regulates the cellular transport of inorganic pyrophosphate. In the progressive ankylosis (ank) mouse, a premature termination mutation at glutamic acid 440 results in a phenotype characterized by inappropriate deposition of basic calcium phosphate crystals in skeletal tissues. Mutations in the amino terminus of ANKH, the human homolog of Ank, result in familial calcium pyrophosphate dihydrate deposition disease. It has been hypothesized that these mutations result in a gain-of-function with respect to the elaboration of extracellular inorganic pyrophosphate. To explore this issue in a mineralization-competent system, we stably transduced ATDC5 cells with wild-type Ank …