Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Thomas Jefferson University

Department of Biochemistry and Molecular Biology Faculty Papers

Series

2013

Receptors

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Identification Of Phosphorylation Sites In The Cooh-Terminal Tail Of The Μ-Opioid Receptor., Ying-Ju Chen, Sue Oldfield, Adrian J. Butcher, Andrew B. Tobin, Kunal Saxena, Vsevolod V. Gurevich, Jeffrey L. Benovic, Graeme Henderson, Eamonn Kelly Jan 2013

Identification Of Phosphorylation Sites In The Cooh-Terminal Tail Of The Μ-Opioid Receptor., Ying-Ju Chen, Sue Oldfield, Adrian J. Butcher, Andrew B. Tobin, Kunal Saxena, Vsevolod V. Gurevich, Jeffrey L. Benovic, Graeme Henderson, Eamonn Kelly

Department of Biochemistry and Molecular Biology Faculty Papers

Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C-terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK-293) cells. Under basal conditions, MOPr is phosphorylated on Ser(363) and Thr(370), while in the presence of morphine or [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO), the COOH terminus is phosphorylated at three additional residues, Ser(356) , Thr(357) and Ser(375). Using N-terminal glutathione S transferase (GST) fusion proteins of the cytoplasmic, C-terminal tail of MOPr and point mutations of the same, we …


Ash2 Acts As An Ecdysone Receptor Coactivator By Stabilizing The Histone Methyltransferase Trr., Albert Carbonell, Alexander Mazo, Florenci Serras, Montserrat Corominas Jan 2013

Ash2 Acts As An Ecdysone Receptor Coactivator By Stabilizing The Histone Methyltransferase Trr., Albert Carbonell, Alexander Mazo, Florenci Serras, Montserrat Corominas

Department of Biochemistry and Molecular Biology Faculty Papers

The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr …