Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

The Jackson Laboratory

Faculty Research 2021

Mutation

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Spatial Concordance Of Dna Methylation Classification In Diffuse Glioma., Niels Verburg, Floris P Barthel, Kevin J Anderson, Kevin C Johnson, Thomas Koopman, Maqsood M Yaqub, Otto S Hoekstra, Adriaan A Lammertsma, Frederik Barkhof, Petra J W Pouwels, Jaap C Reijneveld, Annemieke J M Rozemuller, Jeroen A M Beliën, Ronald Boellaard, Michael D Taylor, Sunit Das, Joseph F Costello, William Peter Vandertop, Pieter Wesseling, Philip C De Witt Hamer, Roel G W Verhaak Dec 2021

Spatial Concordance Of Dna Methylation Classification In Diffuse Glioma., Niels Verburg, Floris P Barthel, Kevin J Anderson, Kevin C Johnson, Thomas Koopman, Maqsood M Yaqub, Otto S Hoekstra, Adriaan A Lammertsma, Frederik Barkhof, Petra J W Pouwels, Jaap C Reijneveld, Annemieke J M Rozemuller, Jeroen A M Beliën, Ronald Boellaard, Michael D Taylor, Sunit Das, Joseph F Costello, William Peter Vandertop, Pieter Wesseling, Philip C De Witt Hamer, Roel G W Verhaak

Faculty Research 2021

BACKGROUND: Intratumoral heterogeneity is a hallmark of diffuse gliomas. DNA methylation profiling is an emerging approach in the clinical classification of brain tumors. The goal of this study is to investigate the effects of intratumoral heterogeneity on classification confidence.

METHODS: We used neuronavigation to acquire 133 image-guided and spatially separated stereotactic biopsy samples from 16 adult patients with a diffuse glioma (7 IDH-wildtype and 2 IDH-mutant glioblastoma, 6 diffuse astrocytoma, IDH-mutant and 1 oligodendroglioma, IDH-mutant and 1p19q codeleted), which we characterized using DNA methylation arrays. Samples were obtained from regions with and without abnormalities on contrast-enhanced T1-weighted and fluid-attenuated inversion …


Comprehensive Characterization Of 536 Patient-Derived Xenograft Models Prioritizes Candidatesfor Targeted Treatment., Hua Sun, Song Cao, R Jay Mashl, Chia-Kuei Mo, Simone Zaccaria, Michael C Wendl, Sherri R Davies, Matthew H Bailey, Tina M Primeau, Jeremy Hoog, Jacqueline L Mudd, Dennis A Dean, Rajesh Patidar, Li Chen, Matthew A Wyczalkowski, Reyka G Jayasinghe, Fernanda Martins Rodrigues, Nadezhda V Terekhanova, Yize Li, Kian-Huat Lim, Andrea Wang-Gillam, Brian A Van Tine, Cynthia X Ma, Rebecca Aft, Katherine C Fuh, Julie K Schwarz, Jose P Zevallos, Sidharth V Puram, John F Dipersio, Nci Pdxnet Consortium, Brandi Davis-Dusenbery, Matthew J Ellis, Michael T Lewis, Michael A Davies, Meenhard Herlyn, Bingliang Fang, Jack A Roth, Alana L Welm, Bryan E Welm, Funda Meric-Bernstam, Feng Chen, Ryan C Fields, Shunqiang Li, Ramaswamy Govindan, James H Doroshow, Jeffrey A Moscow, Yvonne A Evrard, Jeffrey Chuang, Benjamin J Raphael, Li Ding, Carol J Bult, Peter N Robinson Aug 2021

Comprehensive Characterization Of 536 Patient-Derived Xenograft Models Prioritizes Candidatesfor Targeted Treatment., Hua Sun, Song Cao, R Jay Mashl, Chia-Kuei Mo, Simone Zaccaria, Michael C Wendl, Sherri R Davies, Matthew H Bailey, Tina M Primeau, Jeremy Hoog, Jacqueline L Mudd, Dennis A Dean, Rajesh Patidar, Li Chen, Matthew A Wyczalkowski, Reyka G Jayasinghe, Fernanda Martins Rodrigues, Nadezhda V Terekhanova, Yize Li, Kian-Huat Lim, Andrea Wang-Gillam, Brian A Van Tine, Cynthia X Ma, Rebecca Aft, Katherine C Fuh, Julie K Schwarz, Jose P Zevallos, Sidharth V Puram, John F Dipersio, Nci Pdxnet Consortium, Brandi Davis-Dusenbery, Matthew J Ellis, Michael T Lewis, Michael A Davies, Meenhard Herlyn, Bingliang Fang, Jack A Roth, Alana L Welm, Bryan E Welm, Funda Meric-Bernstam, Feng Chen, Ryan C Fields, Shunqiang Li, Ramaswamy Govindan, James H Doroshow, Jeffrey A Moscow, Yvonne A Evrard, Jeffrey Chuang, Benjamin J Raphael, Li Ding, Carol J Bult, Peter N Robinson

Faculty Research 2021

Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications …