Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Bacterial Rna:Dna Hybrids Are Activators Of The Nlrp3 Inflammasome, Sivapriya Kailasan Vanaja, Vijay A. K. Rathinam, Maninjay K. Atianand, Parisa Kalantari, Brian M. Skehan, Katherine A. Fitzgerald, John M. Leong Dec 2014

Bacterial Rna:Dna Hybrids Are Activators Of The Nlrp3 Inflammasome, Sivapriya Kailasan Vanaja, Vijay A. K. Rathinam, Maninjay K. Atianand, Parisa Kalantari, Brian M. Skehan, Katherine A. Fitzgerald, John M. Leong

Katherine A. Fitzgerald

Enterohemorrhagic Escherichia coli (EHEC) is an extracellular pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. The proinflammatory cytokine, interleukin-1beta, has been linked to hemolytic uremic syndrome. Here we identify the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome as an essential mediator of EHEC-induced IL-1beta. Whereas EHEC-specific virulence factors were dispensable for NLRP3 activation, bacterial nucleic acids such as RNA:DNA hybrids and RNA gained cytosolic access and mediated inflammasome-dependent responses. Consistent with a direct role for RNA:DNA hybrids in inflammasome activation, delivery of synthetic EHEC RNA:DNA hybrids into the cytosol triggered NLRP3-dependent responses, …


A Single Base Pair Mutation Encoding A Premature Stop Codon In The Mis Type Ii Receptor Is Responsible For Canine Persistent Mullerian Duct Syndrome, Wenfang Wu, Shengqin Wan, Pujar Shashikant, Mark Haskins, Donald Schlafer, Mary Lee, Vicki Meyers-Wallen Sep 2014

A Single Base Pair Mutation Encoding A Premature Stop Codon In The Mis Type Ii Receptor Is Responsible For Canine Persistent Mullerian Duct Syndrome, Wenfang Wu, Shengqin Wan, Pujar Shashikant, Mark Haskins, Donald Schlafer, Mary Lee, Vicki Meyers-Wallen

Mary M. Lee

Mullerian inhibiting substance (MIS), a secreted glycoprotein in the transforming growth factor-beta family of growth factors, mediates regression of the Mullerian ducts during embryonic sex differentiation in males. In persistent Mullerian duct syndrome (PMDS), rather than undergoing involution, the Mullerian ducts persist in males, giving rise to the uterus, fallopian tubes, and upper vagina. Genetic defects in MIS or its receptor (MISRII) have been identified in patients with PMDS. The phenotype in the canine model of PMDS derived from the miniature schnauzer breed is strikingly similar to that of human patients. In this model, PMDS is inherited as a sex-limited …


Gel Shift Analysis Of The Empa Promoter Region In Vibrio Anguillarum, Steven Denkin, Pedja Sekaric, David Nelson Aug 2014

Gel Shift Analysis Of The Empa Promoter Region In Vibrio Anguillarum, Steven Denkin, Pedja Sekaric, David Nelson

David R. Nelson

BACKGROUND: The induction of metalloprotease encoded by empA in Vibrio anguillarum occurs at high cell density in salmon intestinal mucus. Previously we have shown that there are significant differences in empA expression in two strains of V. anguillarum, M93Sm and NB10. It is hypothesized that differences in empA regulation are due to differences in binding of regulatory elements.

RESULTS: Two strains of V. anguillarum, M93Sm and NB10, were examined and compared for the presence of DNA regulatory proteins that bind to and control the empA promoter region. Gel mobility shift assays, using a digoxigenin (DIG)-labeled oligomer containing a lux box-like …


Acute Modulation Of Sugar Transport In Brain Capillary Endothelial Cell Cultures During Activation Of The Metabolic Stress Pathway, Anthony Cura, Anthony Carruthers Mar 2014

Acute Modulation Of Sugar Transport In Brain Capillary Endothelial Cell Cultures During Activation Of The Metabolic Stress Pathway, Anthony Cura, Anthony Carruthers

Anthony J. Cura

GLUT1-catalyzed equilibrative sugar transport across the mammalian blood-brain barrier is stimulated during acute and chronic metabolic stress; however, the mechanism of acute transport regulation is unknown. We have examined acute sugar transport regulation in the murine brain microvasculature endothelial cell line bEnd.3. Acute cellular metabolic stress was induced by glucose depletion, by potassium cyanide, or by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which reduce or deplete intracellular ATP within 15 min. This results in a 1.7-7-fold increase in V(max) for zero-trans 3-O-methylglucose uptake (sugar uptake into sugar-free cells) and a 3-10-fold increase in V(max) for equilibrium exchange transport (intracellular [sugar] = extracellular [sugar]). …