Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Developing Novel Water-Soluble Porphyrins For Potential Use As Photosensitizers In Photodynamic Therapy, Kayla R. Whittington Apr 2022

Developing Novel Water-Soluble Porphyrins For Potential Use As Photosensitizers In Photodynamic Therapy, Kayla R. Whittington

Honors Theses

Photodynamic therapy (PDT) is a treatment modality for various illnesses, including some types of cancer. Lung cancer is the leading cause of cancer death in the United States. The prevalence of lung cancer in certain gender, racial, ethnic, and socioeconomic groups add to existing health disparities in the United States. For this reason, it is necessary to address the social determinants underlying lung cancer disparities, as well as improve treatment options. These treatment options should be cost effective, convenient, and increase survival rates. This research focused on synthesizing novel water-soluble porphyrin compounds for use as photosensitive agents in PDT for …


Defying The Darkness: Countering Cancer With Light, Travis Hankins Apr 2021

Defying The Darkness: Countering Cancer With Light, Travis Hankins

Honors Theses

Triple-Negative Breast Cancer (TNBC) accounts for upwards of 15% of reported breast cancer cases. This subtype of breast cancer poses a greater threat to those diagnosed as compared to other types of breast cancer due to the lack of treatment options available. Additionally, TNBC grows and spreads faster, tends to be more aggressive, and has a greater chance of recurrence than its counterparts. Altogether, TNBC cases generally have a worse prognosis over other types of breast cancer. Photodynamic therapy (PDT) is currently being researched as a way to treat TNBC. Photodynamic therapy agents are light-activated materials used for localized disease …


Effectiveness And Mechanism Of Action Of Modified Porphyrins For Photodynamic Therapy Of Triple Negative Breast Cancer Cells, Hannah Brandon Jan 2019

Effectiveness And Mechanism Of Action Of Modified Porphyrins For Photodynamic Therapy Of Triple Negative Breast Cancer Cells, Hannah Brandon

Honors Theses

Triple negative breast cancer (TNBC) is a particularly aggressive form of breast cancer that lacks the three molecules typically targeted for treatment. Standard treatment methods leave much to be desired--the rates of metastasis and recurrence are high and the prognosis for most patients with TNBC is poor. One potential treatment for TNBC is photodynamic therapy (PDT), which uses compounds called photosensitizers that are taken up by all tissues in the body. The tumor is exposed to light, activating the photosensitizer and creating reactive oxygen species that cause cell death. This method is relatively pain-free, effective, and does not harm cells …


Killing Breast Cancer One Porphyrin At A Time, Taylor C. Lymburner Jan 2019

Killing Breast Cancer One Porphyrin At A Time, Taylor C. Lymburner

Honors Theses

New treatments for cancer are continuously being developed and improved. One such treatment is Photodynamic Therapy, more commonly referred to as PDT. PDT is quickly becoming more popular due to its relative lack of side effects that are present in other treatments. In PDT, light-sensitive agents are required and are activated by light in the targeted cells. There are many types of PDT agents but the one focused on in this research is a four-pyrrole ring structure known as a porphyrin. The combination of H2 TPPC with 3- amino-oxetane-3-yl-methanol created the final product ofH2TPP-Oxo-MeOH. Once the porphyrin was formed, it …


Connect The Dots: Coupling Quantum Dots With Water-Soluble Porphyrins, Kenley C. Singleton Jan 2009

Connect The Dots: Coupling Quantum Dots With Water-Soluble Porphyrins, Kenley C. Singleton

Honors Theses

Currently, advances in the area of photodynamic therapy (PDT) using porphyrin molecules are being made and not only in this arena, but in science and society overall, nanoparticles are of high interest. For perspective on the size of nanoscale products (such as porphyrins or quantum dots) present in society today, consider that 2 g of 100 nm-diameter nanoparticles contains enough material to provide every human worldwide with 300,000 particles each (Hardman 2006). Porphyrins are better suited for PDT than their organic dye predecessors due to their fluorescence intensity and longevity. Currently, Photofrin® and Visudyne®, both porphyrin-type derivatives are used in …