Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Marquette University

Biomedical Engineering and Bioengineering

Locomotion

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

A Novel Fmri Paradigm Suggests That Pedaling-Related Brain Activation Is Altered After Stroke, Nutta-On Promjunyakul, Brian D. Schmit, Sheila M. Schindler-Ivens Jan 2015

A Novel Fmri Paradigm Suggests That Pedaling-Related Brain Activation Is Altered After Stroke, Nutta-On Promjunyakul, Brian D. Schmit, Sheila M. Schindler-Ivens

Physical Therapy Faculty Research and Publications

The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was …


Changes In Hemodynamic Responses In Chronic Stroke Survivors Do Not Affect Fmri Signal Detection In A Block Experimental Design, Nutta-On Promjunyakul, Brian D. Schmit, Sheila Schindler-Ivens Sep 2013

Changes In Hemodynamic Responses In Chronic Stroke Survivors Do Not Affect Fmri Signal Detection In A Block Experimental Design, Nutta-On Promjunyakul, Brian D. Schmit, Sheila Schindler-Ivens

Physical Therapy Faculty Research and Publications

The use of canonical functions to model BOLD-fMRI data in people post-stroke may lead to inaccurate descriptions of task-related brain activity. The purpose of this study was to determine whether the spatiotemporal profile of hemodynamic responses (HDRs) obtained from stroke survivors during an event-related experiment could be used to develop individualized HDR functions that would enhance BOLD-fMRI signal detection in block experiments. Our long term goal was to use this information to develop individualized HDR functions for stroke survivors that could be used to analyze brain activity associated with locomotor-like movements. We also aimed to examine the reproducibility of HDRs …