Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Medicine and Health Sciences

Comparative Analysis Of Conformational Dynamics And Systematic Characterization Of Cryptic Pockets In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb.1 Spike Complexes With The Ace2 Host Receptor: Confluence Of Binding And Structural Plasticity In Mediating Networks Of Conserved Allosteric Sites, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao, Gennady M. Verkhivker Oct 2023

Comparative Analysis Of Conformational Dynamics And Systematic Characterization Of Cryptic Pockets In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb.1 Spike Complexes With The Ace2 Host Receptor: Confluence Of Binding And Structural Plasticity In Mediating Networks Of Conserved Allosteric Sites, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

In the current study, we explore coarse-grained simulations and atomistic molecular dynamics together with binding energetics scanning and cryptic pocket detection in a comparative examination of conformational landscapes and systematic characterization of allosteric binding sites in the SARS-CoV-2 Omicron BA.2, BA.2.75 and XBB.1 spike full-length trimer complexes with the host receptor ACE2. Microsecond simulations, Markov state models and mutational scanning of binding energies of the SARS-CoV-2 BA.2 and BA.2.75 receptor binding domain complexes revealed the increased thermodynamic stabilization of the BA.2.75 variant and significant dynamic differences between these Omicron variants. Molecular simulations of the SARS-CoV-2 Omicron spike full-length trimer complexes …


Exploring Conformational Landscapes And Cryptic Binding Pockets In Distinct Functional States Of The Sars-Cov-2 Omicron Ba.1 And Ba.2 Trimers: Mutation-Induced Modulation Of Protein Dynamics And Network-Guided Prediction Of Variant-Specific Allosteric Binding Sites, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta Sep 2023

Exploring Conformational Landscapes And Cryptic Binding Pockets In Distinct Functional States Of The Sars-Cov-2 Omicron Ba.1 And Ba.2 Trimers: Mutation-Induced Modulation Of Protein Dynamics And Network-Guided Prediction Of Variant-Specific Allosteric Binding Sites, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

A significant body of experimental structures of SARS-CoV-2 spike trimers for the BA.1 and BA.2 variants revealed a considerable plasticity of the spike protein and the emergence of druggable binding pockets. Understanding the interplay of conformational dynamics changes induced by the Omicron variants and the identification of cryptic dynamic binding pockets in the S protein is of paramount importance as exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In the current study, we explore conformational landscapes and characterize the universe of binding pockets in multiple open and closed functional spike states of the BA.1 and BA.2 Omicron …


Balancing Functional Tradeoffs Between Protein Stability And Ace2 Binding In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic And Energetic Changes, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta May 2023

Balancing Functional Tradeoffs Between Protein Stability And Ace2 Binding In The Sars-Cov-2 Omicron Ba.2, Ba.2.75 And Xbb Lineages: Dynamics-Based Network Models Reveal Epistatic Effects Modulating Compensatory Dynamic And Energetic Changes, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Evolutionary and functional studies suggested that the emergence of the Omicron variants can be determined by multiple fitness trade-offs including the immune escape, binding affinity for ACE2, conformational plasticity, protein stability and allosteric modulation. In this study, we systematically characterize conformational dynamics, structural stability and binding affinities of the SARS-CoV-2 Spike Omicron complexes with the host receptor ACE2 for BA.2, BA.2.75, XBB.1 and XBB.1.5 variants. We combined multiscale molecular simulations and dynamic analysis of allosteric interactions together with the ensemble-based mutational scanning of the protein residues and network modeling of epistatic interactions. This multifaceted computational study characterized molecular mechanisms and …


Coarse-Grained Molecular Simulations And Ensemble-Based Mutational Profiling Of Protein Stability In The Different Functional Forms Of The Sars-Cov-2 Spike Trimers: Balancing Stability And Adaptability In Ba.1, Ba.2 And Ba.2.75 Variants, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta Apr 2023

Coarse-Grained Molecular Simulations And Ensemble-Based Mutational Profiling Of Protein Stability In The Different Functional Forms Of The Sars-Cov-2 Spike Trimers: Balancing Stability And Adaptability In Ba.1, Ba.2 And Ba.2.75 Variants, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Evolutionary and functional studies have suggested that the emergence of Omicron variants can be determined by multiple fitness tradeoffs including immune escape, binding affinity, conformational plasticity, protein stability, and allosteric modulation. In this study, we embarked on a systematic comparative analysis of the conformational dynamics, electrostatics, protein stability, and allostery in the different functional states of spike trimers for BA.1, BA.2, and BA.2.75 variants. Using efficient and accurate coarse-grained simulations and atomistic reconstruction of the ensembles, we examined the conformational dynamics of the spike trimers that agree with the recent functional studies, suggesting that BA.2.75 trimers are the most stable …


Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Sep 2022

Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we performed all-atom MD simulations of RBD–ACE2 complexes for BA.1, BA.1.1, BA.2, and BA.3 Omicron subvariants, conducted a systematic mutational scanning of the RBD–ACE2 binding interfaces and analysis of electrostatic effects. The binding free energy computations of the Omicron RBD–ACE2 complexes and comprehensive examination of the electrostatic interactions quantify the driving forces of binding and provide new insights into energetic mechanisms underlying evolutionary differences between Omicron variants. A systematic mutational scanning of the RBD residues determines the protein stability centers and binding energy hotpots in the Omicron RBD–ACE2 complexes. By employing the ensemble-based global network analysis, we …


Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Apr 2022

Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and …


Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker Nov 2017

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK …