Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Celia A. Schiffer

Discipline
Keyword
Publication Year

Articles 1 - 10 of 10

Full-Text Articles in Medicine and Health Sciences

Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer Jul 2017

Crystal Structure Of Apobec3a Bound To Single-Stranded Dna Reveals Structural Basis For Cytidine Deamination And Specificity, Takahide Kouno, Tania V. Silvas, Brendan J. Hilbert, Shivender Shandilya, Markus-Frederik Bohn, Brian A. Kelch, William E. Royer, Mohan Somasundaran, Nese Kurt Yilmaz, Hiroshi Matsuo, Celia A. Schiffer

Celia A. Schiffer

Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 A. This structure not only visualizes the active site …


Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein …


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer Jun 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. …


Structural And Molecular Analysis Of A Protective Epitope Of Lyme Disease Antigen Ospa And Antibody Interactions, Shivender Shandilya, Nese Kurt Yilmaz, Ejemel Monir, Andrew Sadowski, William D. Thomas, Mark S. Klempner, Celia A. Schiffer, Yan Wang Aug 2016

Structural And Molecular Analysis Of A Protective Epitope Of Lyme Disease Antigen Ospa And Antibody Interactions, Shivender Shandilya, Nese Kurt Yilmaz, Ejemel Monir, Andrew Sadowski, William D. Thomas, Mark S. Klempner, Celia A. Schiffer, Yan Wang

Celia A. Schiffer

The murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease. Here, we present a detailed structure-based analysis of the LA-2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA-2 based on computational predictions on …


Massteri: Promoting Translational Research And Entrepreneurship At The University Of Massachusetts Medical School, Melissa J. Moore, Celia A. Schiffer, Anastasia Khvorova, Anita Ballesteros, Cynthia Fuhrmann, Jean A. King, Margaret Koziel, Thomas Mccullough, Linda Plano Nov 2014

Massteri: Promoting Translational Research And Entrepreneurship At The University Of Massachusetts Medical School, Melissa J. Moore, Celia A. Schiffer, Anastasia Khvorova, Anita Ballesteros, Cynthia Fuhrmann, Jean A. King, Margaret Koziel, Thomas Mccullough, Linda Plano

Celia A. Schiffer

MassTERi is a faculty-led initiative to foster entrepreneurship among UMass Medical School students, postdocs and faculty, and facilitate translation of UMMS discoveries into drugs, products, technologies and companies. The mission of MassTERi is to; foster a culture of entrepreneurship at UMass Medical School and facilitate dynamic partnerships with industry; bridge the gap between UMMS discoveries and their development into drugs, products, technologies and companies; educate and nurture the next generation of translational scientists and entrepreneurs; benefit the public good through development and commercialization of new therapies and creation of high-value life science jobs. We will present information about MassTERi and …


Structural Basis For Coevolution Of A Human Immunodeficiency Virus Type 1 Nucleocapsid-P1 Cleavage Site With A V82a Drug-Resistant Mutation In Viral Protease, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, Celia A. Schiffer Nov 2011

Structural Basis For Coevolution Of A Human Immunodeficiency Virus Type 1 Nucleocapsid-P1 Cleavage Site With A V82a Drug-Resistant Mutation In Viral Protease, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, Celia A. Schiffer

Celia A. Schiffer

Maturation of human immunodeficiency virus (HIV) depends on the processing of Gag and Pol polyproteins by the viral protease, making this enzyme a prime target for anti-HIV therapy. Among the protease substrates, the nucleocapsid-p1 (NC-p1) sequence is the least homologous, and its cleavage is the rate-determining step in viral maturation. In the other substrates of HIV-1 protease, P1 is usually either a hydrophobic or an aromatic residue, and P2 is usually a branched residue. NC-p1, however, contains Asn at P1 and Ala at P2. In response to the V82A drug-resistant protease mutation, the P2 alanine of NC-p1 mutates to valine …


Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer Nov 2011

Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer …


Substrate Envelope And Drug Resistance: Crystal Structure Of Ro1 In Complex With Wild-Type Human Immunodeficiency Virus Type 1 Protease, Moses Prabu-Jeyabalan, Nancy M. King, Ellen A. Nalivaika, Gabrielle Heilek-Snyder, Nick Cammack, Celia A. Schiffer Nov 2011

Substrate Envelope And Drug Resistance: Crystal Structure Of Ro1 In Complex With Wild-Type Human Immunodeficiency Virus Type 1 Protease, Moses Prabu-Jeyabalan, Nancy M. King, Ellen A. Nalivaika, Gabrielle Heilek-Snyder, Nick Cammack, Celia A. Schiffer

Celia A. Schiffer

In our previous crystallographic studies of human immunodeficiency virus type 1 (HIV-1) protease-substrate complexes, we described a conserved "envelope" that appears to be important for substrate recognition and the selection of drug-resistant mutations. In this study, the complex of HIV-1 protease with the inhibitor RO1 was determined and comparison with the substrate envelope provides a rationale for mutational patterns.


Viability Of A Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variant: Structural Insights For Better Antiviral Therapy, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, Celia A. Schiffer Nov 2011

Viability Of A Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variant: Structural Insights For Better Antiviral Therapy, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, Celia A. Schiffer

Celia A. Schiffer

Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more …


Role Of Invariant Thr80 In Human Immunodeficiency Virus Type 1 Protease Structure, Function, And Viral Infectivity, Jennifer E. Foulkes-Murzycki, Moses Prabu-Jeyabalan, Deyna Cooper, Gavin J. Henderson, Janera Harris, Ronald I. Swanstrom, Celia A. Schiffer Nov 2011

Role Of Invariant Thr80 In Human Immunodeficiency Virus Type 1 Protease Structure, Function, And Viral Infectivity, Jennifer E. Foulkes-Murzycki, Moses Prabu-Jeyabalan, Deyna Cooper, Gavin J. Henderson, Janera Harris, Ronald I. Swanstrom, Celia A. Schiffer

Celia A. Schiffer

Sequence variability associated with human immunodeficiency virus type 1 (HIV-1) is useful for inferring structural and/or functional constraints at specific residues within the viral protease. Positions that are invariant even in the presence of drug selection define critically important residues for protease function. While the importance of conserved active-site residues is easily understood, the role of other invariant residues is not. This work focuses on invariant Thr80 at the apex of the P1 loop of HIV-1, HIV-2, and simian immunodeficiency virus protease. In a previous study, we postulated, on the basis of a molecular dynamics simulation of the unliganded protease, …