Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

The Sequence Dependent Nanoscale Structure Of Cenp-A Nucleosomes, Tommy Stormberg, Yuri L. Lyubchenko Jan 2022

The Sequence Dependent Nanoscale Structure Of Cenp-A Nucleosomes, Tommy Stormberg, Yuri L. Lyubchenko

Journal Articles: Pharmaceutical Sciences

CENP-A is a histone variant found in high abundance at the centromere in humans. At the centromere, this histone variant replaces the histone H3 found throughout the bulk chromatin. Additionally, the centromere comprises tandem repeats of α-satellite DNA, which CENP-A nucleosomes assemble upon. However, the effect of the DNA sequence on the nucleosome assembly and centromere formation remains poorly understood. Here, we investigated the structure of nucleosomes assembled with the CENP-A variant using Atomic Force Microscopy. We assembled both CENP-A nucleosomes and H3 nucleosomes on a DNA substrate containing an α-satellite motif and characterized their positioning and wrapping efficiency. We …


Nanorings To Probe Mechanical Stress Of Single-Stranded Dna Mediated By The Dna Duplex, Karen Zagorski, Tommy Stormberg, Mohtadin Hashemi, Anatoly B. Kolomeisky, Yuri L. Lyubchenko Jan 2022

Nanorings To Probe Mechanical Stress Of Single-Stranded Dna Mediated By The Dna Duplex, Karen Zagorski, Tommy Stormberg, Mohtadin Hashemi, Anatoly B. Kolomeisky, Yuri L. Lyubchenko

Journal Articles: Pharmaceutical Sciences

The interplay between the mechanical properties of double-stranded and single-stranded DNA is a phenomenon that contributes to various genetic processes in which both types of DNA structures coexist. Highly stiff DNA duplexes can stretch single-stranded DNA (ssDNA) segments between the duplexes in a topologically constrained domain. To evaluate such an effect, we designed short DNA nanorings in which a DNA duplex with 160 bp is connected by a 30 nt single-stranded DNA segment. The stretching effect of the duplex in such a DNA construct can lead to the elongation of ssDNA, and this effect can be measured directly using atomic …


Crispr-Krispr: A Method To Identify On-Target And Random Insertion Of Donor Dnas And Their Characterization In Knock-In Mice, Masayuki Tanaka, Keiko Yokoyama, Hideki Hayashi, Sanae Isaki, Kanae Kitatani, Ting Wang, Hisako Kawata, Hideyuki Matsuzawa, Channabasavaiah B. Gurumurthy, Hiromi Miura, Masato Ohtsuka Jan 2022

Crispr-Krispr: A Method To Identify On-Target And Random Insertion Of Donor Dnas And Their Characterization In Knock-In Mice, Masayuki Tanaka, Keiko Yokoyama, Hideki Hayashi, Sanae Isaki, Kanae Kitatani, Ting Wang, Hisako Kawata, Hideyuki Matsuzawa, Channabasavaiah B. Gurumurthy, Hiromi Miura, Masato Ohtsuka

Journal Articles: Pharmacology & Experimental Neuroscience

CRISPR tools can generate knockout and knock-in animal models easily, but the models can contain off-target genomic lesions or random insertions of donor DNAs. Simpler methods to identify off-target lesions and random insertions, using tail or earpiece DNA, are unavailable. We develop CRISPR-KRISPR (CRISPR-Knock-ins and Random Inserts Searching PRotocol), a method to identify both off-target lesions and random insertions. CRISPR-KRISPR uses as little as 3.4 μg of genomic DNA; thus, it can be easily incorporated as an additional step to genotype founder animals for further breeding.