Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Regulation Of Skeletal Muscle Plasticity By The Gut Microbiome, Taylor R. Valentino Jan 2022

Regulation Of Skeletal Muscle Plasticity By The Gut Microbiome, Taylor R. Valentino

Theses and Dissertations--Physiology

Recent evidence suggests that the gut microbiome could play a role in skeletal muscle plasticity, providing novel treatments for muscle wasting diseases and/or performance enhancements. I first sought to determine if the gut microbiome is necessary for skeletal muscle adaptation to exercise. Forty-two, four-month old, female C57Bl/6J underwent nine weeks of weighted wheel running or remained in cage with a locked wheel, without or without the administration of antibiotics (treated). In response to wheel running, I found that antibiotic depletion of the microbiome led to a blunted hypertrophic response in the soleus muscle as measured by normalized muscle wet weight …


Defining The Role Of Reactive Oxygen Species, Nitric Oxide, And Sphingolipid Signaling In Tumor Necrosis Factor - Induced Skeletal Muscle Weakness, Shawn Stasko Jan 2013

Defining The Role Of Reactive Oxygen Species, Nitric Oxide, And Sphingolipid Signaling In Tumor Necrosis Factor - Induced Skeletal Muscle Weakness, Shawn Stasko

Theses and Dissertations--Physiology

In many chronic inflammatory diseases, patients suffer from skeletal muscle weakness, exacerbating their symptoms. Serum levels of tumor necrosis factor-alpha (TNF) and sphingomyelinase are increased, suggesting their possible role in the progression of this weakness. This dissertation focuses on the role that reactive oxygen species (ROS) and nitric oxide (NO) play in mediating TNF-induced skeletal muscle weakness and to what extent sphingolipid signaling mediates cellular response to TNF.

The first aim of this work was to identify which endogenous oxidant species stimulated by TNF contributes to skeletal muscle weakness. In C57BL/6 mice (n=38), intraperitoneal injection of TNF elicited a 25% …