Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

The Dynamic Nature Of Chromatin, Caitlyn M. Riedmann Jan 2017

The Dynamic Nature Of Chromatin, Caitlyn M. Riedmann

Theses and Dissertations--Molecular and Cellular Biochemistry

Eukaryotic organisms contain their entire genome in the nucleus of their cells. In order to fit within the nucleus, genomic DNA wraps into nucleosomes, the basic, repeating unit of chromatin. Nucleosomes wrap around each other to form higher order chromatin structures. Here we study many factors that affect, or are effected by, chromatin structure including: (1) how low-dose inorganic arsenic (iAs) changes chromatin structures and their relation to global transcription and splicing patterns, and (2) how chromatin architectural proteins (CAPs) bind to and change nucleosome dynamics and DNA target site accessibility.

Despite iAs’s non-mutagenic nature, chronic exposure to low doses …


Discovering A Novel Antifungal Target In Downstream Sterol Biosynthesis Using A Squalene Synthase Functional Motif, Kristin Brooke Linscott Jan 2017

Discovering A Novel Antifungal Target In Downstream Sterol Biosynthesis Using A Squalene Synthase Functional Motif, Kristin Brooke Linscott

Theses and Dissertations--Molecular and Cellular Biochemistry

The sterol biosynthetic pathway is essential for growth of all eukaryotic cells and the main target of antifungal agents. The emergence of resistance to these antifungals in an already ill patient population indicates a need to develop drugs that have a broad spectrum of activity among pathogenic fungi and have minimal patient toxicity. Squalene synthase is the first committed step in the sterol pathway and has been studied intensively for development of antifungal agents. While the overall architecture of this enzyme is identical throughout eukaryotes, it was shown that plant and animal genes cannot complement a squalene synthase knockout mutation …