Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Thomas Jefferson University

Farber Institute for Neuroscience Faculty Papers

2010

Humans

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Wild-Type And Mutant Sod1 Share An Aberrant Conformation And A Common Pathogenic Pathway In Als., Daryl A Bosco, Gerardo Morfini, N Murat Karabacak, Yuyu Song, Francois Gros-Louis, Piera Pasinelli, Holly Goolsby, Benjamin A Fontaine, Nathan Lemay, Diane Mckenna-Yasek, Matthew P Frosch, Jeffrey N Agar, Jean-Pierre Julien, Scott T Brady, Robert H Brown Nov 2010

Wild-Type And Mutant Sod1 Share An Aberrant Conformation And A Common Pathogenic Pathway In Als., Daryl A Bosco, Gerardo Morfini, N Murat Karabacak, Yuyu Song, Francois Gros-Louis, Piera Pasinelli, Holly Goolsby, Benjamin A Fontaine, Nathan Lemay, Diane Mckenna-Yasek, Matthew P Frosch, Jeffrey N Agar, Jean-Pierre Julien, Scott T Brady, Robert H Brown

Farber Institute for Neuroscience Faculty Papers

Many mutations confer one or more toxic function(s) on copper/zinc superoxide dismutase 1 (SOD1) that impair motor neuron viability and cause familial amyotrophic lateral sclerosis (FALS). Using a conformation-specific antibody that detects misfolded SOD1 (C4F6), we found that oxidized wild-type SOD1 and mutant SOD1 share a conformational epitope that is not present in normal wild-type SOD1. In a subset of human sporadic ALS (SALS) cases, motor neurons in the lumbosacral spinal cord were markedly C4F6 immunoreactive, indicating that an aberrant wild-type SOD1 species was present. Recombinant, oxidized wild-type SOD1 and wild-type SOD1 immunopurified from SALS tissues inhibited kinesin-based fast axonal …


Dopaminergic Neurons Derived From Human Induced Pluripotent Stem Cells Survive And Integrate Into 6-Ohda-Lesioned Rats., Jingli Cai, Ming Yang, Elizabeth Poremsky, Sarah Kidd, Jay S Schneider, Lorraine Iacovitti Jul 2010

Dopaminergic Neurons Derived From Human Induced Pluripotent Stem Cells Survive And Integrate Into 6-Ohda-Lesioned Rats., Jingli Cai, Ming Yang, Elizabeth Poremsky, Sarah Kidd, Jay S Schneider, Lorraine Iacovitti

Farber Institute for Neuroscience Faculty Papers

Cell replacement therapy could be an important treatment strategy for Parkinson's disease (PD), which is caused by the degeneration of dopamine neurons in the midbrain (mDA). The success of this approach greatly relies on the discovery of an abundant source of cells capable of mDAergic function in the brain. With the paucity of available human fetal tissue, efforts have increasingly focused on renewable stem cells. Human induced pluripotent stem (hiPS) cells offer great promise in this regard. If hiPS cells can be differentiated into authentic mDA neuron, hiPS could provide a potential autologous source of transplant tissue when generated from …