Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Biomechanical Differences Of Two Common Football Movement Tasks In Studded And Non-Studded Shoe Conditions On Infilled Synthetic Turf, Elizabeth Anne Brock Aug 2012

Biomechanical Differences Of Two Common Football Movement Tasks In Studded And Non-Studded Shoe Conditions On Infilled Synthetic Turf, Elizabeth Anne Brock

Masters Theses

The purpose of this study was to examine kinematic and kinetic differences in three shoe conditions (traditional football shoes with natural and synthetic turf studs and a neutral running shoe) during two common football movements (a 180° cut and a land-cut movement) on infilled synthetic turf. Fourteen recreational male football players performed five trials in all three shoe conditions for a 180° cut as well as a land-cut maneuver. The kinematic and kinetic variables were analyzed with a 3 x 2 (shoe x movement) repeated measures analysis of variance (ANOVA, p<0.05). Peak free moment was significantly greater for the land-cut trials (p<0.001). Vertical GRFs were significantly greater for the land-cut trials (p<0.001). A cleat x movement interaction was seen for time to vertical impact GRF (p=0.048). A cleat main effect was found for time to vertical impact between natural turf cleat and synthetic turf cleat (p=0.019). Vertical loading rate was significantly greater in land-cut trials. Peak medial GRFs showed a significant cleat x movement interaction (p=0.002). The results from this study suggest that land-cut movement elicit greater vertical GRF and vertical impact loadings rates. The running shoe had significantly less dorsiflexion range of motion (ROM) than the synthetic turf studs. A significant cleat main effect was found for peak eversion velocity (p=0.005). Post hoc comparisons showed that it was significantly smaller in shoe than that natural turf stud (p=0.016) and synthetic turf stud (p=0.002). In general, there was a lack of differences between the shoe conditions for GRFs and kinematic variables. For the 180° cut movement, natural turf studs produced lowest peak medial GRF compared to the synthetic turf studs and the shoe. The results from this study suggest that land-cut movement elicit greater vertical GRF and vertical impact loadings rates. In general, there was a lack of differences of GRFs and kinematic variables between the shoe conditions. For the 180° cut movement, natural turf studs produced lowest peak medial GRF compared to the synthetic turf studs and the shoe. Overall, increased GRFs, especially in combination with rapid change of direction and deceleration may increase the chance of injury.


Union Royale Belge De Sociétés De Football Association Asbl V. Jean-Marc Bosman: The Evolution Of Labor Law In Professional Soccer And Its Implication, Marvin Smith Feb 2012

Union Royale Belge De Sociétés De Football Association Asbl V. Jean-Marc Bosman: The Evolution Of Labor Law In Professional Soccer And Its Implication, Marvin Smith

Claremont-UC Undergraduate Research Conference on the European Union

No abstract provided.


Effects Of Two Contrast Training Programs On Jump Performance In Rugby Union Players During A Competition Phase, C K Argus, N D Gill, J W Keogh, Michael Mcguigan, W G Hopkins Jan 2012

Effects Of Two Contrast Training Programs On Jump Performance In Rugby Union Players During A Competition Phase, C K Argus, N D Gill, J W Keogh, Michael Mcguigan, W G Hopkins

Research outputs 2012

Purpose: There is little literature comparing contrast training programs typically performed by team-sport athletes within a competitive phase. We compared the effects of two contrast training programs on a range of measures in high-level rugby union players during the competition season. Methods: The programs consisted of a higher volume-load (strength-power) or lower volume-load (speed-power) resistance training; each included a tapering of loading (higher force early in the week, higher velocity later in the week) and was performed twice a week for 4 wk. Eighteen players were assessed for peak power during a bodyweight countermovement jump (BWCMJ), bodyweight squat jump (BWSJ), …


A Functional Agility Short-Term Fatigue Protocol Changes Lower Extremity Mechanics, Nelson Cortes, David Quammen, Shawn Lucci, Eric Greska, James Onate Jan 2012

A Functional Agility Short-Term Fatigue Protocol Changes Lower Extremity Mechanics, Nelson Cortes, David Quammen, Shawn Lucci, Eric Greska, James Onate

Human Movement Sciences & Special Education Faculty Publications

The purpose of this study was to evaluate the effects of a functional agility fatigue protocol on lower extremity biomechanics between two unanticipated tasks (stop-jump and sidestep). The subjects consisted of fifteen female collegiate soccer athletes (19 ± 0.7 years, 1.67 ± 0.1 m, 61.7± 8 kg) free of lower extremity injury. Participants performed five trials of stop-jump and sidestep tasks. A functional short-term agility protocol was performed, and immediately following participants repeated the unanticipated running tasks. Lower extremity kinematic and kinetic values were obtained pre and post fatigue. Repeated measures analyses of variance were conducted for each dependent variable …