Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Life Sciences

Aging

Pharmacology and Nutritional Sciences Faculty Publications

Articles 1 - 9 of 9

Full-Text Articles in Medicine and Health Sciences

Neuroligin-1 Is Altered In The Hippocampus Of Alzheimer's Disease Patients And Mouse Models, And Modulates The Toxicity Of Amyloid-Beta Oligomers, Julien Dufort-Gervais, Chloé Provost, Laurence Charbonneau, Christopher M. Norris, Frédéric Calon, Valérie Mongrain, Jonathan Brouillette Apr 2020

Neuroligin-1 Is Altered In The Hippocampus Of Alzheimer's Disease Patients And Mouse Models, And Modulates The Toxicity Of Amyloid-Beta Oligomers, Julien Dufort-Gervais, Chloé Provost, Laurence Charbonneau, Christopher M. Norris, Frédéric Calon, Valérie Mongrain, Jonathan Brouillette

Pharmacology and Nutritional Sciences Faculty Publications

Synapse loss occurs early and correlates with cognitive decline in Alzheimer’s disease (AD). Synaptotoxicity is driven, at least in part, by amyloid-beta oligomers (Aβo), but the exact synaptic components targeted by Aβo remain to be identified. We here tested the hypotheses that the post-synaptic protein Neuroligin-1 (NLGN1) is affected early in the process of neurodegeneration in the hippocampus, and specifically by Aβo, and that it can modulate Aβo toxicity. We found that hippocampal NLGN1 was decreased in patients with AD in comparison to patients with mild cognitive impairment and control subjects. Female 3xTg-AD mice also showed a decreased NLGN1 level …


Overexpression Of Cyb5r3 And Nqo1, Two Nad+-Producing Enzymes, Mimics Aspects Of Caloric Restriction, Alberto Diaz-Ruiz, Michael Lanasa, Joseph Garcia, Hector Mora, Frances Fan, Alejandro Martin-Montalvo, Andrea Di Francesco, Miguel Calvo-Rubio, Andrea Salvador-Pascual, Miguel A. Aon, Kenneth W. Fishbein, Kevin J. Pearson, Jose Manuel Villalba, Placido Navas, Michel Bernier, Rafael De Cabo Aug 2018

Overexpression Of Cyb5r3 And Nqo1, Two Nad+-Producing Enzymes, Mimics Aspects Of Caloric Restriction, Alberto Diaz-Ruiz, Michael Lanasa, Joseph Garcia, Hector Mora, Frances Fan, Alejandro Martin-Montalvo, Andrea Di Francesco, Miguel Calvo-Rubio, Andrea Salvador-Pascual, Miguel A. Aon, Kenneth W. Fishbein, Kevin J. Pearson, Jose Manuel Villalba, Placido Navas, Michel Bernier, Rafael De Cabo

Pharmacology and Nutritional Sciences Faculty Publications

Calorie restriction (CR) is one of the most robust means to improve health and survival in model organisms. CR imposes a metabolic program that leads to increased stress resistance and delayed onset of chronic diseases, including cancer. In rodents, CR induces the upregulation of two NADH‐dehydrogenases, namely NAD(P)H:quinone oxidoreductase 1 (Nqo1) and cytochrome b5 reductase 3 (Cyb5r3), which provide electrons for energy metabolism. It has been proposed that this upregulation may be responsible for some of the beneficial effects of CR, and defects in their activity are linked to aging and several age‐associated diseases. However, …


Neuroimaging Biomarkers Of Mtor Inhibition On Vascular And Metabolic Functions In Aging Brain And Alzheimer’S Disease, Jennifer Lee, Lucille M. Yanckello, David Ma, Jared D. Hoffman, Ishita Parikh, Scott Thalman, Bjoern Bauer, Anika M. S. Hartz, Fahmeed Hyder, Ai-Ling Lin Jul 2018

Neuroimaging Biomarkers Of Mtor Inhibition On Vascular And Metabolic Functions In Aging Brain And Alzheimer’S Disease, Jennifer Lee, Lucille M. Yanckello, David Ma, Jared D. Hoffman, Ishita Parikh, Scott Thalman, Bjoern Bauer, Anika M. S. Hartz, Fahmeed Hyder, Ai-Ling Lin

Pharmacology and Nutritional Sciences Faculty Publications

The mechanistic target of rapamycin (mTOR) is a nutrient sensor of eukaryotic cells. Inhibition of mechanistic mTOR signaling can increase life and health span in various species via interventions that include rapamycin and caloric restriction (CR). In the central nervous system, mTOR inhibition demonstrates neuroprotective patterns in aging and Alzheimer’s disease (AD) by preserving mitochondrial function and reducing amyloid beta retention. However, the effects of mTOR inhibition for in vivo brain physiology remain largely unknown. Here, we review recent findings of in vivo metabolic and vascular measures using non-invasive, multimodal neuroimaging methods in rodent models for brain aging and AD. …


Fk506-Binding Protein 12.6/1b, A Negative Regulator Of [Ca2+], Rescues Memory And Restores Genomic Regulation In The Hippocampus Of Aging Rats, John C. Gant, Eric M. Blalock, Kuey-Chu Chen, Inga Kadish, Olivier Thibault, Nada M. Porter, Philip W. Landfield Jan 2018

Fk506-Binding Protein 12.6/1b, A Negative Regulator Of [Ca2+], Rescues Memory And Restores Genomic Regulation In The Hippocampus Of Aging Rats, John C. Gant, Eric M. Blalock, Kuey-Chu Chen, Inga Kadish, Olivier Thibault, Nada M. Porter, Philip W. Landfield

Pharmacology and Nutritional Sciences Faculty Publications

Hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of ryanodine receptor Ca2+ release, reverses aging-induced memory impairment and neuronal Ca2+ dysregulation. Here, we tested the hypothesis that FKBP1b also can protect downstream transcriptional networks from aging-induced dysregulation. We gave hippocampal microinjections of FKBP1b-expressing viral vector to male rats at either 13 months of age (long-term, LT) or 19 months of age (short-term, ST) and tested memory performance in the Morris water maze at 21 months of age. Aged rats treated ST or LT with FKBP1b substantially outperformed age-matched vector controls and performed similarly …


Transcriptional Signatures Of Brain Aging And Alzheimer's Disease: What Are Our Rodent Models Telling Us?, Kendra E. Hargis, Eric M. Blalock Mar 2017

Transcriptional Signatures Of Brain Aging And Alzheimer's Disease: What Are Our Rodent Models Telling Us?, Kendra E. Hargis, Eric M. Blalock

Pharmacology and Nutritional Sciences Faculty Publications

Aging is the biggest risk factor for idiopathic Alzheimer’s disease (AD). Recently, the National Institutes of Health released AD research recommendations that include: appreciating normal brain aging, expanding data-driven research, using open-access resources, and evaluating experimental reproducibility. Transcriptome data sets for aging and AD in humans and animal models are available in NIH-curated, publically accessible databases. However, little work has been done to test for concordance among those molecular signatures. Here, we test the hypothesis that brain transcriptional profiles from animal models recapitulate those observed in the human condition. Raw transcriptional profile data from twenty-nine studies were analyzed to produce …


Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault Feb 2017

Calcium's Role As Nuanced Modulator Of Cellular Physiology In The Brain, Hilaree N. Frazier, Shaniya Maimaiti, Katie L. Anderson, Lawrence D. Brewer, John C. Gant, Nada M. Porter, Olivier Thibault

Pharmacology and Nutritional Sciences Faculty Publications

Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer’s disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely can …


Aged Rats Are Hypo-Responsive To Acute Restraint: Implications For Psychosocial Stress In Aging, Heather M. Buechel, Jelena Popovic, Kendra Staggs, Katie L. Anderson, Olivier Thibault, Eric M. Blalock Feb 2014

Aged Rats Are Hypo-Responsive To Acute Restraint: Implications For Psychosocial Stress In Aging, Heather M. Buechel, Jelena Popovic, Kendra Staggs, Katie L. Anderson, Olivier Thibault, Eric M. Blalock

Pharmacology and Nutritional Sciences Faculty Publications

Cognitive processes associated with prefrontal cortex and hippocampus decline with age and are vulnerable to disruption by stress. The stress/stress hormone/allostatic load hypotheses of brain aging posit that brain aging, at least in part, is the manifestation of life-long stress exposure. In addition, as humans age, there is a profound increase in the incidence of new onset stressors, many of which are psychosocial (e.g., loss of job, death of spouse, social isolation), and aged humans are well-understood to be more vulnerable to the negative consequences of such new-onset chronic psychosocial stress events. However, the mechanistic underpinnings of this age-related shift …


Aging And Down Syndrome, Elizabeth Head, Wayne Silverman, David Patterson, Ira T. Lott Jan 2012

Aging And Down Syndrome, Elizabeth Head, Wayne Silverman, David Patterson, Ira T. Lott

Pharmacology and Nutritional Sciences Faculty Publications

No abstract provided.


Expansion Of The Calcium Hypothesis Of Brain Aging And Alzheimer's Disease: Minding The Store, Olivier Thibault, John C. Gant, Philip W. Landfield Apr 2007

Expansion Of The Calcium Hypothesis Of Brain Aging And Alzheimer's Disease: Minding The Store, Olivier Thibault, John C. Gant, Philip W. Landfield

Pharmacology and Nutritional Sciences Faculty Publications

Evidence accumulated over more than two decades has implicated Ca2+ dysregulation in brain aging and Alzheimer's disease (AD), giving rise to the Ca2+ hypothesis of brain aging and dementia. Electrophysiological, imaging, and behavioral studies in hippocampal or cortical neurons of rodents and rabbits have revealed aging-related increases in the slow afterhyperpolarization, Ca2+ spikes and currents, Ca2+transients, and L-type voltage-gated Ca2+ channel (L-VGCC) activity. Several of these changes have been associated with age-related deficits in learning or memory. Consequently, one version of the Ca2+ hypothesis has been that increased L-VGCC activity drives many of the other Ca2+-related biomarkers of hippocampal aging. …