Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Behavioural Analysis Of A Nociceptive Event In Fish: Comparisons Between Three Species Demonstrate Specific Responses, Siobhan C. Reilly, John P. Quinn, Andrew R. Cossins, Lynne U. Sneddon Nov 2008

Behavioural Analysis Of A Nociceptive Event In Fish: Comparisons Between Three Species Demonstrate Specific Responses, Siobhan C. Reilly, John P. Quinn, Andrew R. Cossins, Lynne U. Sneddon

Sentience Collection

Nociception is the sensory mechanism by which potentially harmful stimuli are detected in animals and humans. The behavioural responses to noxious stimulation have been studied in two fish species thus far. However, since species-specific differences are seen in mammals, more species need to be examined to determine whether nociceptive responses are generic in fish. The present study investigated the behavioural and respiratory response to an acute noxious or potentially painful stimulus in common carp (Cyprinus carpio), zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss). Behavioural parameters such as frequency of swimming, use of cover and any anomalous behaviour were measured …


Amyloid Fibrils: Potential Food Safety Implications, Michael Greger Jan 2008

Amyloid Fibrils: Potential Food Safety Implications, Michael Greger

Human Health Collection

The demonstration of oral Amyloid-A (AA) fibril transmissibility has raised food safety questions about the consumption of amyloidotic viscera. In a presumed prion-like mechanism, amyloid fibrils have been shown to trigger and accelerate the development of AA amyloidosis in rodent models. The finding of amyloid fibrils in edible avian and mammalian food animal tissues, combined with the inability of cooking temperatures to eliminate their amyloidogenic potential, has led to concerns that products such as pâté de foie gras may activate a reactive systemic amyloidosis in susceptible consumers. Given the ability of amyloid fibrils to cross-seed the formation of chemically heterologous …