Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Translational Medical Research

PDF

Dissertations & Theses (Open Access)

Theses/Dissertations

Cancer metabolism

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Great Expectations: Phosph(On)Ate Prodrugs In Drug Design—Opportunities And Limitations, Victoria Yan Dec 2020

Great Expectations: Phosph(On)Ate Prodrugs In Drug Design—Opportunities And Limitations, Victoria Yan

Dissertations & Theses (Open Access)

Phosphate and phosphonates are chemical moieties with historical precedence in anticancer and antiviral nucleotide analogues. Synchronous to modern efforts identifying novel therapeutic targets in cancer, such chemical moieties are being investigated in the design of novel inhibitors with antineoplastic potential. A central challenge to the delivery of phosph(on)ate-containing drugs is their anionic character at physiological pH, which portends poor membrane permeability. This limitation has been successfully overcome through the use of prodrugs. When attached to the phosph(on)ate moiety, prodrugs mask the negative charge and easily enable cell permeability. Upon cellular entry, the promoieties are enzymatically or environmentally cleaved to unveil …


Investigating The Roles Of P63 And P73 Isoforms To Therapeutically Treat P53-Altered Cancers, Avinashnarayan Venkatanarayan May 2015

Investigating The Roles Of P63 And P73 Isoforms To Therapeutically Treat P53-Altered Cancers, Avinashnarayan Venkatanarayan

Dissertations & Theses (Open Access)

Investigating the roles of p63 & p73 isoforms to therapeutically treat

p53-altered cancers

Avinashnarayan Venkatanarayan, M.S.

Supervisory Professor: Elsa R. Flores, Ph.D.

The TP53 tumor suppressor is mutated in approximately 50% of human cancers rendering cancer therapies ineffective. p53 reactivation suppresses tumor formation in mice. However, this strategy has proven difficult to implement therapeutically. An alternate approach to overcome p53 loss is to manipulate the p53-family members, p63 and p73, which interact and share structural similarities to p53. p63 and p73, unlike p53 are less frequently mutated and have two major isoforms with distinct functions …