Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Radiology

Dartmouth Scholarship

Humans

Articles 1 - 5 of 5

Full-Text Articles in Medicine and Health Sciences

Numerical Chromosomal Instability Mediates Susceptibility To Radiation Treatment, Samuel F. Bakhoum, Lilian Kabeche, Matthew D. Wood, Christopher D. Laucius Jul 2015

Numerical Chromosomal Instability Mediates Susceptibility To Radiation Treatment, Samuel F. Bakhoum, Lilian Kabeche, Matthew D. Wood, Christopher D. Laucius

Dartmouth Scholarship

The exquisite sensitivity of mitotic cancer cells to ionizing radiation (IR) underlies an important rationale for the widely used fractionated radiation therapy. However, the mechanism for this cell cycle-dependent vulnerability is unknown. Here we show that treatment with IR leads to mitotic chromosome segregation errors in vivo and long-lasting aneuploidy in tumour-derived cell lines. These mitotic errors generate an abundance of micronuclei that predispose chromosomes to subsequent catastrophic pulverization thereby independently amplifying radiation-induced genome damage. Experimentally suppressing whole-chromosome missegregation reduces downstream chromosomal defects and significantly increases the viability of irradiated mitotic cells. Further, orthotopically transplanted human glioblastoma tumours in which …


Feasibility Of Tomotherapy-Based Image-Guided Radiotherapy To Reduce Aspiration Risk In Patients With Non-Laryngeal And Non-Pharyngeal Head And Neck Cancer, Nam P. Nguyen, Lexie Smith-Raymond, Vincent Vinh-Hung, Paul Vos, Rick Davis, Anand Desai, Thomas Sroka Mar 2013

Feasibility Of Tomotherapy-Based Image-Guided Radiotherapy To Reduce Aspiration Risk In Patients With Non-Laryngeal And Non-Pharyngeal Head And Neck Cancer, Nam P. Nguyen, Lexie Smith-Raymond, Vincent Vinh-Hung, Paul Vos, Rick Davis, Anand Desai, Thomas Sroka

Dartmouth Scholarship

Purpose: The study aims to assess the feasibility of Tomotherapy-based image-guided radiotherapy (IGRT) to reduce the aspiration risk in patients with non-laryngeal and non-hypopharyngeal cancer. A retrospective review of 48 patients undergoing radiation for non-laryngeal and non-hypopharyngeal head and neck cancers was conducted. All patients had a modified barium swallow (MBS) prior to treatment, which was repeated one month following radiotherapy. Mean middle and inferior pharyngeal dose was recorded and correlated with the MBS results to determine aspiration risk.


Imaging Breast Adipose And Fibroglandular Tissue Molecular Signatures By Using Hybrid Mri-Guided Near-Infrared Spectral Tomography, Ben Brooksby, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Subhadra Srinivasan, Christine Kogel, Tor D. Tosteson, John Weaver, Steven P. Poplack, Keith D. Paulsen Jun 2006

Imaging Breast Adipose And Fibroglandular Tissue Molecular Signatures By Using Hybrid Mri-Guided Near-Infrared Spectral Tomography, Ben Brooksby, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Subhadra Srinivasan, Christine Kogel, Tor D. Tosteson, John Weaver, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Magnetic resonance (MR)-guided near-infrared spectral tomography was developed and used to image adipose and fibroglandular breast tissue of 11 normal female subjects, recruited under an institutional review board-approved protocol. Images of hemoglobin, oxygen saturation, water fraction, and subcellular scattering were reconstructed and show that fibroglandular fractions of both blood and water are higher than in adipose tissue. Variation in adipose and fibroglandular tissue composition between individuals was not significantly different across the scattered and dense breast categories. Combined MR and near-infrared tomography provides fundamental molecular information about these tissue types with resolution governed by MR T1 images.


Near-Infrared Characterization Of Breast Tumors In Vivo Using Spectrally-Constrained Reconstruction, Subhadra Srinivasan, Brian W. Pogue, Ben Brooksby, Shudong Jiang, Hamid Dehghani, Christine Kogel, Wendy A. Wells, Steven P. Poplack, Keith D. Paulsen Oct 2005

Near-Infrared Characterization Of Breast Tumors In Vivo Using Spectrally-Constrained Reconstruction, Subhadra Srinivasan, Brian W. Pogue, Ben Brooksby, Shudong Jiang, Hamid Dehghani, Christine Kogel, Wendy A. Wells, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Multi-wavelength Near-Infrared (NIR) Tomography was utilized in this study to non-invasively quantify physiological parameters of breast tumors using direct spectral reconstruction. Frequency domain NIR measurements were incorporated with a new spectrally constrained direct chromophore and scattering image reconstruction algorithm, which was validated in simulations and experimental phantoms. Images of total hemoglobin, oxygen saturation, water, and scatter parameters were obtained with higher accuracy than previously reported. Using this spectral approach, in vivo NIR images are presented and interpreted through a series of case studies (n=6 subjects) having differing abnormalities. The corresponding mammograms and ultrasound images are also evaluated. Three of six …


Interpreting Hemoglobin And Water Concentration, Oxygen Saturation, And Scattering Measured In Vivo By Near-Infrared Breast Tomography, Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Christine Kogel, Sandra Soho, Jennifer J. Gibson, Tor D. Tosteson, Steven P. Poplack, Keith D. Paulsen Oct 2003

Interpreting Hemoglobin And Water Concentration, Oxygen Saturation, And Scattering Measured In Vivo By Near-Infrared Breast Tomography, Subhadra Srinivasan, Brian W. Pogue, Shudong Jiang, Hamid Dehghani, Christine Kogel, Sandra Soho, Jennifer J. Gibson, Tor D. Tosteson, Steven P. Poplack, Keith D. Paulsen

Dartmouth Scholarship

Near-infrared spectroscopic tomography was used to measure the properties of 24 mammographically normal breasts to quantify whole-breast absorption and scattering spectra and to evaluate which tissue composition characteristics can be determined from these spectra. The absorption spectrum of breast tissue allows quantification of (i) total hemoglobin concentration, (ii) hemoglobin oxygen saturation, and (iii) water concentration, whereas the scattering spectrum provides information about the size and number density of cellular components and structural matrix elements. These property data were tested for correlation to demographic information, including subject age, body mass index, breast size, and radiographic …