Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Medicine and Health Sciences

Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Sep 2022

Probing Mechanisms Of Binding And Allostery In The Sars-Cov-2 Spike Omicron Variant Complexes With The Host Receptor: Revealing Functional Roles Of The Binding Hotspots In Mediating Epistatic Effects And Communication With Allosteric Pockets, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we performed all-atom MD simulations of RBD–ACE2 complexes for BA.1, BA.1.1, BA.2, and BA.3 Omicron subvariants, conducted a systematic mutational scanning of the RBD–ACE2 binding interfaces and analysis of electrostatic effects. The binding free energy computations of the Omicron RBD–ACE2 complexes and comprehensive examination of the electrostatic interactions quantify the driving forces of binding and provide new insights into energetic mechanisms underlying evolutionary differences between Omicron variants. A systematic mutational scanning of the RBD residues determines the protein stability centers and binding energy hotpots in the Omicron RBD–ACE2 complexes. By employing the ensemble-based global network analysis, we …


Interpretable Machine Learning Models For Molecular Design Of Tyrosine Kinase Inhibitors Using Variational Autoencoders And Perturbation-Based Approach Of Chemical Space Exploration, Keerthi Krishnan, Ryan Kassab, Steve Agajanian, Gennady M. Verkhivker Sep 2022

Interpretable Machine Learning Models For Molecular Design Of Tyrosine Kinase Inhibitors Using Variational Autoencoders And Perturbation-Based Approach Of Chemical Space Exploration, Keerthi Krishnan, Ryan Kassab, Steve Agajanian, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

In the current study, we introduce an integrative machine learning strategy for the autonomous molecular design of protein kinase inhibitors using variational autoencoders and a novel cluster-based perturbation approach for exploration of the chemical latent space. The proposed strategy combines autoencoder-based embedding of small molecules with a cluster-based perturbation approach for efficient navigation of the latent space and a feature-based kinase inhibition likelihood classifier that guides optimization of the molecular properties and targeted molecular design. In the proposed generative approach, molecules sharing similar structures tend to cluster in the latent space, and interpolating between two molecules in the latent space …


Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Jul 2022

Integrating Conformational Dynamics And Perturbation-Based Network Modeling For Mutational Profiling Of Binding And Allostery In The Sars-Cov-2 Spike Variant Complexes With Antibodies: Balancing Local And Global Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

n this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the …


A Comparative Study On Deep Learning Models For Text Classification Of Unstructured Medical Notes With Various Levels Of Class Imbalance, Hongxia Lu, Louis Ehwerhemuepha, Cyril Rakovski Jul 2022

A Comparative Study On Deep Learning Models For Text Classification Of Unstructured Medical Notes With Various Levels Of Class Imbalance, Hongxia Lu, Louis Ehwerhemuepha, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background

Discharge medical notes written by physicians contain important information about the health condition of patients. Many deep learning algorithms have been successfully applied to extract important information from unstructured medical notes data that can entail subsequent actionable results in the medical domain. This study aims to explore the model performance of various deep learning algorithms in text classification tasks on medical notes with respect to different disease class imbalance scenarios.

Methods

In this study, we employed seven artificial intelligence models, a CNN (Convolutional Neural Network), a Transformer encoder, a pretrained BERT (Bidirectional Encoder Representations from Transformers), and four typical …


Assessing The Reidentification Risks Posed By Deep Learning Algorithms Applied To Ecg Data, Arin Ghazarian, Jianwei Zheng, Daniele Struppa, Cyril Rakovski Jun 2022

Assessing The Reidentification Risks Posed By Deep Learning Algorithms Applied To Ecg Data, Arin Ghazarian, Jianwei Zheng, Daniele Struppa, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

ECG (Electrocardiogram) data analysis is one of the most widely used and important tools in cardiology diagnostics. In recent years the development of advanced deep learning techniques and GPU hardware have made it possible to train neural network models that attain exceptionally high levels of accuracy in complex tasks such as heart disease diagnoses and treatments. We investigate the use of ECGs as biometrics in human identification systems by implementing state-of-the-art deep learning models. We train convolutional neural network models on approximately 81k patients from the US, Germany and China. Currently, this is the largest research project on ECG identification. …


Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani May 2022

Biophysical Insight Into The Sars-Cov2 Spike–Ace2 Interaction And Its Modulation By Hepcidin Through A Multifaceted Computational Approach, Hamid Hadi-Alijanvand, Luisa Di Paola, Guang Hu, David M. Leitner, Gennady M. Verkhivker, Peixin Sun, Humanath Poudel, Alessandro Giuliani

Mathematics, Physics, and Computer Science Faculty Articles and Research

At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection …


Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan Apr 2022

Computer Simulations And Network-Based Profiling Of Binding And Allosteric Interactions Of Sars-Cov-2 Spike Variant Complexes And The Host Receptor: Dissecting The Mechanistic Effects Of The Delta And Omicron Mutations, Gennady M. Verkhivker, Steve Agajanian, Ryan Kassab, Keerthi Krishnan

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we combine all-atom MD simulations and comprehensive mutational scanning of S-RBD complexes with the angiotensin-converting enzyme 2 (ACE2) host receptor in the native form as well as the S-RBD Delta and Omicron variants to (a) examine the differences in the dynamic signatures of the S-RBD complexes and (b) identify the critical binding hotspots and sensitivity of the mutational positions. We also examined the differences in allosteric interactions and communications in the S-RBD complexes for the Delta and Omicron variants. Through the perturbation-based scanning of the allosteric propensities of the SARS-CoV-2 S-RBD residues and dynamics-based network centrality and …


Dissecting Mutational Allosteric Effects In Alkaline Phosphatases Associated With Different Hypophosphatasia Phenotypes: An Integrative Computational Investigation, Fei Xiao, Ziyun Zhou, Xingyu Song, Mi Gan, Jie Long, Gennady M. Verkhivker, Guang Hu Mar 2022

Dissecting Mutational Allosteric Effects In Alkaline Phosphatases Associated With Different Hypophosphatasia Phenotypes: An Integrative Computational Investigation, Fei Xiao, Ziyun Zhou, Xingyu Song, Mi Gan, Jie Long, Gennady M. Verkhivker, Guang Hu

Mathematics, Physics, and Computer Science Faculty Articles and Research

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the …


A High Precision Machine Learning-Enabled System For Predicting Idiopathic Ventricular Arrhythmia Origins, Jianwei Zheng, Guohua Fu, Daniele Struppa, Islam Abudayyeh, Tahmeed Contractor, Kyle Anderson, Huimin Chu, Cyril Rakovski Mar 2022

A High Precision Machine Learning-Enabled System For Predicting Idiopathic Ventricular Arrhythmia Origins, Jianwei Zheng, Guohua Fu, Daniele Struppa, Islam Abudayyeh, Tahmeed Contractor, Kyle Anderson, Huimin Chu, Cyril Rakovski

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background: Radiofrequency catheter ablation (CA) is an efficient antiarrhythmic treatment with a class I indication for idiopathic ventricular arrhythmia (IVA), only when drugs are ineffective or have unacceptable side effects. The accurate prediction of the origins of IVA can significantly increase the operation success rate, reduce operation duration and decrease the risk of complications. The present work proposes an artificial intelligence-enabled ECG analysis algorithm to estimate possible origins of idiopathic ventricular arrhythmia at a clinical-grade level accuracy.

Method: A total of 18,612 ECG recordings extracted from 545 patients who underwent successful CA to treat IVA were proportionally sampled into training, …


Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker Mar 2022

Structural And Computational Studies Of The Sars-Cov-2 Spike Protein Binding Mechanisms With Nanobodies: From Structure And Dynamics To Avidity-Driven Nanobody Engineering, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural …


Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker Feb 2022

Allosteric Determinants Of The Sars-Cov-2 Spike Protein Binding With Nanobodies: Examining Mechanisms Of Mutational Escape And Sensitivity Of The Omicron Variant, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric …