Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Chemistry Faculty Publications

1-Deoxy-d-xylulose-5-phosphate synthase

Articles 1 - 1 of 1

Full-Text Articles in Medicine and Health Sciences

Mechanistic Binding Insights For 1-Deoxy-D-Xylulose-5-Phosphatesynthase, The Enzyme Catalyzing The First Reaction Of Isoprenoid Biosynthesis In The Malaria-Causing Protists, Plasmodium Falciparum And Plasmodium Vivax, Matthew R. Battistini, Christopher Shoji, Sumit Handa, Leonid Breydo, David J. Merkler Apr 2016

Mechanistic Binding Insights For 1-Deoxy-D-Xylulose-5-Phosphatesynthase, The Enzyme Catalyzing The First Reaction Of Isoprenoid Biosynthesis In The Malaria-Causing Protists, Plasmodium Falciparum And Plasmodium Vivax, Matthew R. Battistini, Christopher Shoji, Sumit Handa, Leonid Breydo, David J. Merkler

Chemistry Faculty Publications

We have successfully truncated and recombinantly-expressed 1-deoxy-D-xylulose-5-phosphate synthase (DXS) from both Plasmodium vivax and Plasmodium falciparum. We elucidated the order of substrate binding for both of these ThDP-dependent enzymes using steady-state kinetic analyses, dead-end inhibition, and intrinsic tryptophan fluorescence titrations. Both enzymes adhere to a random sequential mechanism with respect to binding of both substrates: pyruvate and D-glyceraldehyde-3-phosphate. These findings are in contrast to other ThDP-dependent enzymes, which exhibit classical ordered and/or ping-pong kinetic mechanisms. A better understanding of the kinetic mechanism for these two Plasmodial enzymes could aid in the development of novel DXS-specific inhibitors that might prove useful …