Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Spiroadamantyl 1,2,4-Trioxolane, 1,2,4-Trioxane, And 1,2,4-Trioxepane Pairs: Relationship Between Peroxide Bond Iron(Ii) Reactivity, Heme Alkylation Efficiency, And Antimalarial Activity, Xiaofang Wang, Darren J. Creek, Yuxiang Dong, Jacques Chollet, Christian Scheurer, Sergio Wittlin, Susan A. Charman, Patrick H. Dussault, James K. Wood, Jonathan L. Vennerstrom Aug 2009

Spiroadamantyl 1,2,4-Trioxolane, 1,2,4-Trioxane, And 1,2,4-Trioxepane Pairs: Relationship Between Peroxide Bond Iron(Ii) Reactivity, Heme Alkylation Efficiency, And Antimalarial Activity, Xiaofang Wang, Darren J. Creek, Yuxiang Dong, Jacques Chollet, Christian Scheurer, Sergio Wittlin, Susan A. Charman, Patrick H. Dussault, James K. Wood, Jonathan L. Vennerstrom

Chemistry Faculty Publications

These data suggest that iron(II) reactivity for a set of homologous spiroadamantyl 1,2,4-trioxolane, 1,2,4-trioxane, and 1,2,4-trioxepane peroxide heterocycles is a necessary, but insufficient, property of animalarial peroxides. Heme alkylation efficiency appears to give a more accurate prediction of antimalarial activity than FeSO4-mediated reaction rates, suggesting that antimalarial activity is not merely dependent on peroxide bond cleavage, but also on the ability of reactive intermediates to alkylate heme or other proximal targets.


Preparation And Characterization Of Some Substituted Benzyl N-Nitrosocarbamates Containing An N-2-(Methylthio)Ethyl Or A Bis(2-Aminoethyl)Sulfide Functionality, Satya Venkata, Eric Shamo, Vladimir Benin Jan 2009

Preparation And Characterization Of Some Substituted Benzyl N-Nitrosocarbamates Containing An N-2-(Methylthio)Ethyl Or A Bis(2-Aminoethyl)Sulfide Functionality, Satya Venkata, Eric Shamo, Vladimir Benin

Chemistry Faculty Publications

The synthesis and characterization of some substituted benzyl N-nitrosocarbamates with an N-2-(methylthio)ethyl or a bis(2-aminoethyl)sulfide functionality is reported, as a part of a long-term goal to design and prepare novel photolabile structures that could be used as substances for controlled release of alkylating and/or crosslinking agents. The synthesis was accomplished by reaction of benzyl chloroformates with the corresponding amines, resulting in the preparation of carbamates. The latter were subsequently nitrosated, utilizing two different N-nitrosation methods, to yield the target structures.