Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Discovery Of An Enzyme And Substrate Selective Inhibitor Of Adam10 Using An Exosite-Binding Glycosylated Substrate, Franck Madoux, Daniela Dreymuller, Jean-Phillipe Pettiloud, Radleigh Santos, Christoph Becker-Pauly, Andreas Ludwig, Gregg B. Fields, Thomas Bannister, Timothy P. Spicer, Mare Cudic, Louis D. Scampavia, Dmitriy Minond Dec 2016

Discovery Of An Enzyme And Substrate Selective Inhibitor Of Adam10 Using An Exosite-Binding Glycosylated Substrate, Franck Madoux, Daniela Dreymuller, Jean-Phillipe Pettiloud, Radleigh Santos, Christoph Becker-Pauly, Andreas Ludwig, Gregg B. Fields, Thomas Bannister, Timothy P. Spicer, Mare Cudic, Louis D. Scampavia, Dmitriy Minond

Mathematics Faculty Articles

ADAM10 and ADAM17 have been shown to contribute to the acquired drug resistance of HER2-positive breast cancer in response to trastuzumab. The majority of ADAM10 and ADAM17 inhibitor development has been focused on the discovery of compounds that bind the active site zinc, however, in recent years, there has been a shift from active site to secondary substrate binding site (exosite) inhibitor discovery in order to identify non-zinc-binding molecules. In the present work a glycosylated, exosite-binding substrate of ADAM10 and ADAM17 was utilized to screen 370,276 compounds from the MLPCN collection. As a result of this uHTS effort, a selective, …


Identification Of Protein Palmitoylation Inhibitors From A Scaffold Ranking Library, Laura D. Hamel, Brian J. Lenhart, David A. Mitchell, Radleigh Santos, Marc A. Giulianotti, Robert J. Deschenes May 2016

Identification Of Protein Palmitoylation Inhibitors From A Scaffold Ranking Library, Laura D. Hamel, Brian J. Lenhart, David A. Mitchell, Radleigh Santos, Marc A. Giulianotti, Robert J. Deschenes

Mathematics Faculty Articles

The addition of palmitoyl moieties to proteins regulates their membrane targeting, subcellular localization, and stability. Dysregulation of the enzymes which catalyzed the palmitoyl addition and/or the substrates of these enzymes have been linked to cancer, cardiovascular, and neurological disorders, implying these enzymes and substrates are valid targets for pharmaceutical intervention. However, current chemical modulators of zDHHC PAT enzymes lack specificity and affinity, underscoring the need for screening campaigns to identify new specific, high affinity modulators. This report describes a mixture based screening approach to identify inhibitors of Erf2 activity. Erf2 is the Saccharomyces cerevisiae PAT responsible for catalyzing the palmitoylation …