Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Pathology

Sanders-Brown Center on Aging Faculty Publications

Male

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

Neuropathological And Genetic Correlates Of Survival And Dementia Onset In Synucleinopathies: A Retrospective Analysis, David J. Irwin, Murray Grossman, Daniel Weintraub, Howard I. Hurtig, John E. Duda, Sharon X. Xie, Edward B. Lee, Vivianna M. Van Deerlin, Oscar L. Lopez, Julia K. Kofler, Peter T. Nelson, Gregory A. Jicha, Randy Woltjer, Joseph F. Quinn, Jeffery Kaye, James B. Leverenz, Debby Tsuang, Katelan Longfellow, Dora Yearout, Walter Kukull, C. Dirk Keene, Thomas J. Montine, Cyrus P. Zabetian, John Q. Trojanowski Jan 2017

Neuropathological And Genetic Correlates Of Survival And Dementia Onset In Synucleinopathies: A Retrospective Analysis, David J. Irwin, Murray Grossman, Daniel Weintraub, Howard I. Hurtig, John E. Duda, Sharon X. Xie, Edward B. Lee, Vivianna M. Van Deerlin, Oscar L. Lopez, Julia K. Kofler, Peter T. Nelson, Gregory A. Jicha, Randy Woltjer, Joseph F. Quinn, Jeffery Kaye, James B. Leverenz, Debby Tsuang, Katelan Longfellow, Dora Yearout, Walter Kukull, C. Dirk Keene, Thomas J. Montine, Cyrus P. Zabetian, John Q. Trojanowski

Sanders-Brown Center on Aging Faculty Publications

Background

Great heterogeneity exists in survival and the interval between onset of motor symptoms and dementia symptoms across synucleinopathies. We aimed to identify genetic and pathological markers that have the strongest association with these features of clinical heterogeneity in synucleinopathies.

Methods

In this retrospective study, we examined symptom onset, and genetic and neuropathological data from a cohort of patients with Lewy body disorders with autopsy-confirmed α synucleinopathy (as of Oct 1, 2015) who were previously included in other studies from five academic institutions in five cities in the USA. We used histopathology techniques and markers to assess the burden of …


Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer Mar 2015

Mitochondria-Associated Micrornas In Rat Hippocampus Following Traumatic Brain Injury, Wang-Xia Wang, Nishant P. Visavadiya, Jignesh D. Pandya, Peter T. Nelson, Patrick G. Sullivan, Joe E. Springer

Sanders-Brown Center on Aging Faculty Publications

Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the …


The Expression Of Microrna Mir-107 Decreases Early In Alzheimer's Disease And May Accelerate Disease Progression Through Regulation Of Β-Site Amyloid Precursor Protein-Cleaving Enzyme 1, Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, Peter T. Nelson Jan 2008

The Expression Of Microrna Mir-107 Decreases Early In Alzheimer's Disease And May Accelerate Disease Progression Through Regulation Of Β-Site Amyloid Precursor Protein-Cleaving Enzyme 1, Wang-Xia Wang, Bernard W. Rajeev, Arnold J. Stromberg, Na Ren, Guiliang Tang, Qingwei Huang, Isidore Rigoutsos, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNAs (miRNAs) are small regulatory RNAs that participate in posttranscriptional gene regulation in a sequence-specific manner. However, little is understood about the role(s) of miRNAs in Alzheimer's disease (AD). We used miRNA expression microarrays on RNA extracted from human brain tissue from the University of Kentucky Alzheimer's Disease Center Brain Bank with near-optimal clinicopathological correlation. Cases were separated into four groups: elderly nondemented with negligible AD-type pathology, nondemented with incipient AD pathology, mild cognitive impairment (MCI) with moderate AD pathology, and AD. Among the AD-related miRNA expression changes, miR-107 was exceptional because miR-107 levels decreased significantly even in patients with …