Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Oncology

University of Nebraska Medical Center

Series

2024

Humans

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Novel Spirocyclic Dimer, Spid3, Targets Chronic Lymphocytic Leukemia Survival Pathways With Potent Preclinical Effects, Alexandria Eiken, Audrey L. Smith, Sydney A. Skupa, Elizabeth Schmitz, Sandeep Rana, Sarbjit Singh, Siddhartha Kumar, Jayapal Reddy Mallareddy, Aguirre A. De Cubas, Akshay Krishna, Achyuth Kalluchi, M. Jordan Rowley, Christopher R. D'Angelo, Matthew A. Lunning, Gregory Bociek, Julie M. Vose, Amarnath Natarajan, Dalia El-Gamal Jan 2024

Novel Spirocyclic Dimer, Spid3, Targets Chronic Lymphocytic Leukemia Survival Pathways With Potent Preclinical Effects, Alexandria Eiken, Audrey L. Smith, Sydney A. Skupa, Elizabeth Schmitz, Sandeep Rana, Sarbjit Singh, Siddhartha Kumar, Jayapal Reddy Mallareddy, Aguirre A. De Cubas, Akshay Krishna, Achyuth Kalluchi, M. Jordan Rowley, Christopher R. D'Angelo, Matthew A. Lunning, Gregory Bociek, Julie M. Vose, Amarnath Natarajan, Dalia El-Gamal

Journal Articles: Oncology and Hematology

Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival …


Bet Inhibition Reforms The Immune Microenvironment And Alleviates T Cell Dysfunction In Chronic Lymphocytic Leukemia, Audrey L. Smith, Sydney A. Skupa, Alexandria P. Eiken, Timothy E. Reznicek, Elizabeth Schmitz, Nolan Williams, Dalia Y. Moore, Christopher R. D'Angelo, Avyakta Kallam, Matthew A. Lunning, Gregory Bociek, Julie M. Vose, Eslam Mohamed, Anna R. Mahr, Paul W. Denton, Ben Powell, Gideon Bollag, M. Jordan Rowley, Dalia El-Gamal Jan 2024

Bet Inhibition Reforms The Immune Microenvironment And Alleviates T Cell Dysfunction In Chronic Lymphocytic Leukemia, Audrey L. Smith, Sydney A. Skupa, Alexandria P. Eiken, Timothy E. Reznicek, Elizabeth Schmitz, Nolan Williams, Dalia Y. Moore, Christopher R. D'Angelo, Avyakta Kallam, Matthew A. Lunning, Gregory Bociek, Julie M. Vose, Eslam Mohamed, Anna R. Mahr, Paul W. Denton, Ben Powell, Gideon Bollag, M. Jordan Rowley, Dalia El-Gamal

Journal Articles: Oncology and Hematology

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eμ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer …