Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Oncology

University of Kentucky

2016

Nuclear Proteins

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao Oct 2016

Pleckstrin Homology (Ph) Domain Leucine-Rich Repeat Protein Phosphatase Controls Cell Polarity By Negatively Regulating The Activity Of Atypical Protein Kinase C, Xiaopeng Xiong, Xin Li, Yang-An Wen, Tianyan Gao

Markey Cancer Center Faculty Publications

The proper establishment of epithelial polarity allows cells to sense and respond to signals that arise from the microenvironment in a spatiotemporally controlled manner. Atypical PKCs (aPKCs) are implicated as key regulators of epithelial polarity. However, the molecular mechanism underlying the negative regulation of aPKCs remains largely unknown. In this study, we demonstrated that PH domain leucine-rich repeat protein phosphatase (PHLPP), a novel family of Ser/Thr protein phosphatases, plays an important role in regulating epithelial polarity by controlling the phosphorylation of both aPKC isoforms. Altered expression of PHLPP1 or PHLPP2 disrupted polarization of Caco2 cells grown in 3D cell cultures …


Phlpp Negatively Regulates Cell Motility Through Inhibition Of Akt Activity And Integrin Expression In Pancreatic Cancer Cells, Alena J. Smith, Yang-An Wen, Payton D. Stevens, Jingpeng Liu, Chi Wang, Tianyan Gao Jan 2016

Phlpp Negatively Regulates Cell Motility Through Inhibition Of Akt Activity And Integrin Expression In Pancreatic Cancer Cells, Alena J. Smith, Yang-An Wen, Payton D. Stevens, Jingpeng Liu, Chi Wang, Tianyan Gao

Markey Cancer Center Faculty Publications

Pancreatic adenocarcinoma is currently the fourth leading cause for cancer-related mortality. Malignant progression of pancreatic cancer depends not only on rapid proliferation of tumor cells but also on increased cell motility. In this study, we showed that increased PHLPP expression significantly reduced the rate of migration in pancreatic ductal adenocarcinoma (PDAC) cells whereas knockdown of PHLPP had the opposite effect. In addition, cell motility at the individual cell level was negatively regulated by PHLPP as determined using time-lapse imaging. Interestingly, the expression of β1 and β4 integrin proteins were decreased in PHLPP overexpressing cells and increased in PHLPP knockdown cells …