Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Oncology

University of Kentucky

Series

Machine learning

Articles 1 - 3 of 3

Full-Text Articles in Medicine and Health Sciences

A New Efficient Method To Detect Genetic Interactions For Lung Cancer Gwas, Jennifer Luyapan, Xuemei Ji, Siting Li, Xiangjun Xiao, Dakai Zhu, Eric J. Duell, David C. Christiani, Matthew B. Schabath, Susanne M. Arnold, Shanbeh Zienolddiny, Hans Brunnström, Olle Melander, Mark D. Thornquist, Todd A. Mackenzie, Christopher I. Amos, Jiang Gui Oct 2020

A New Efficient Method To Detect Genetic Interactions For Lung Cancer Gwas, Jennifer Luyapan, Xuemei Ji, Siting Li, Xiangjun Xiao, Dakai Zhu, Eric J. Duell, David C. Christiani, Matthew B. Schabath, Susanne M. Arnold, Shanbeh Zienolddiny, Hans Brunnström, Olle Melander, Mark D. Thornquist, Todd A. Mackenzie, Christopher I. Amos, Jiang Gui

Markey Cancer Center Faculty Publications

BACKGROUND: Genome-wide association studies (GWAS) have proven successful in predicting genetic risk of disease using single-locus models; however, identifying single nucleotide polymorphism (SNP) interactions at the genome-wide scale is limited due to computational and statistical challenges. We addressed the computational burden encountered when detecting SNP interactions for survival analysis, such as age of disease-onset. To confront this problem, we developed a novel algorithm, called the Efficient Survival Multifactor Dimensionality Reduction (ES-MDR) method, which used Martingale Residuals as the outcome parameter to estimate survival outcomes, and implemented the Quantitative Multifactor Dimensionality Reduction method to identify significant interactions associated with age of …


Integrated Multiparametric Radiomics And Informatics System For Characterizing Breast Tumor Characteristics With The Oncotypedx Gene Assay, Michael A. Jacobs, Christopher B. Umbricht, Vishwa S. Parekh, Riham H. El Khouli, Leslie Cope, Katarzyna J. Macura, Susan Harvey, Antonio C. Wolff Sep 2020

Integrated Multiparametric Radiomics And Informatics System For Characterizing Breast Tumor Characteristics With The Oncotypedx Gene Assay, Michael A. Jacobs, Christopher B. Umbricht, Vishwa S. Parekh, Riham H. El Khouli, Leslie Cope, Katarzyna J. Macura, Susan Harvey, Antonio C. Wolff

Radiology Faculty Publications

Optimal use of multiparametric magnetic resonance imaging (mpMRI) can identify key MRI parameters and provide unique tissue signatures defining phenotypes of breast cancer. We have developed and implemented a new machine-learning informatic system, termed Informatics Radiomics Integration System (IRIS) that integrates clinical variables, derived from imaging and electronic medical health records (EHR) with multiparametric radiomics (mpRad) for identifying potential risk of local or systemic recurrence in breast cancer patients. We tested the model in patients (n = 80) who had Estrogen Receptor positive disease and underwent OncotypeDX gene testing, radiomic analysis, and breast mpMRI. The IRIS method was trained …


Identification Of Prognostic Genes And Gene Sets For Early-Stage Non-Small Cell Lung Cancer Using Bi-Level Selection Methods, Suyan Tian, Chi Wang, Howard H. Chang, Jianguo Sun Apr 2017

Identification Of Prognostic Genes And Gene Sets For Early-Stage Non-Small Cell Lung Cancer Using Bi-Level Selection Methods, Suyan Tian, Chi Wang, Howard H. Chang, Jianguo Sun

Biostatistics Faculty Publications

In contrast to feature selection and gene set analysis, bi-level selection is a process of selecting not only important gene sets but also important genes within those gene sets. Depending on the order of selections, a bi-level selection method can be classified into three categories – forward selection, which first selects relevant gene sets followed by the selection of relevant individual genes; backward selection which takes the reversed order; and simultaneous selection, which performs the two tasks simultaneously usually with the aids of a penalized regression model. To test the existence of subtype-specific prognostic genes for non-small cell lung cancer …