Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

Interleukin 1 Alpha Administration Is Neuroprotective And Neuro-Restorative Following Experimental Ischemic Stroke, Kathleen E. Salmeron, Michael E. Maniskas, Danielle N. Edwards, Raymond Wong, Ivana Rajkovic, Amanda L. Trout, Abir A. Rahman, Samantha Hamilton, Justin F. Fraser, Emmanuel Pinteaux, Gregory J. Bix Nov 2019

Interleukin 1 Alpha Administration Is Neuroprotective And Neuro-Restorative Following Experimental Ischemic Stroke, Kathleen E. Salmeron, Michael E. Maniskas, Danielle N. Edwards, Raymond Wong, Ivana Rajkovic, Amanda L. Trout, Abir A. Rahman, Samantha Hamilton, Justin F. Fraser, Emmanuel Pinteaux, Gregory J. Bix

Sanders-Brown Center on Aging Faculty Publications

BACKGROUND: Stroke remains a leading cause of death and disability worldwide despite recent treatment breakthroughs. A primary event in stroke pathogenesis is the development of a potent and deleterious local and peripheral inflammatory response regulated by the pro-inflammatory cytokine interleukin-1 (IL-1). While the role of IL-1β (main released isoform) has been well studied in stroke, the role of the IL-1α isoform remains largely unknown. With increasing utilization of intravenous tissue plasminogen activator (t-PA) or thrombectomy to pharmacologically or mechanically remove ischemic stroke causing blood clots, respectively, there is interest in pairing successful cerebrovascular recanalization with neurotherapeutic pharmacological interventions (Fraser et …


Sciatic Nerve Cut And Repair Using Fibrin Glue In Adult Mice, Erica T. Akhter, Travis M. Rotterman, Arthur W. English, Francisco J. Alvarez Sep 2019

Sciatic Nerve Cut And Repair Using Fibrin Glue In Adult Mice, Erica T. Akhter, Travis M. Rotterman, Arthur W. English, Francisco J. Alvarez

Neuroscience, Cell Biology & Physiology Faculty Publications

Peripheral nerve injury (PNI) is an excellent model for studying neural responses to injury and elucidating the mechanisms that can facilitate axon regeneration. As such, several animal models have been employed to study regenerative mechanisms after PNI, including Aplysia, zebrafish, rabbits, cats and rodents. This protocol describes how to perform a sciatic nerve injury and repair in mice, one of the most frequently used models to study mechanisms that facilitate recovery after PNI, and that takes advantage of the availability of many genetic models. In this protocol, we describe a method for using fibrin glue to secure the proximal …


Developing Drug Therapies: Cognitive Damage In Mice Following Brain Radiation, Rachel Yuska Aug 2019

Developing Drug Therapies: Cognitive Damage In Mice Following Brain Radiation, Rachel Yuska

The Journal of Purdue Undergraduate Research

Pediatric brain cancer patients are at a high risk for radiation-induced cognitive impairment due to white matter changes in the brain. Half of six-month radiotherapy survivors develop significant changes in white matter. Previous research has shown that a mouse model can be used to show similar cognitive and behavioral deficits in human patients. The purpose of this work is to evaluate the effectiveness of two drug therapies, Donepezil and 3,3-Diindolylmethane (DIM), that could be used to either protect the brain from radiation injury or cure the cognitive injury and behavioral deficits that result from whole-brain irradiation. This project consisted of …


Understanding The Axonal Response To Injury By In Vivo Imaging In The Mouse Spinal Cord: A Tale Of Two Branches., Binhai Zheng, Ariana O Lorenzana, Le Ma Aug 2019

Understanding The Axonal Response To Injury By In Vivo Imaging In The Mouse Spinal Cord: A Tale Of Two Branches., Binhai Zheng, Ariana O Lorenzana, Le Ma

Department of Neuroscience Faculty Papers

Understanding the basic properties of how axons respond to injury in the mammalian central nervous system (CNS) is of fundamental value for developing strategies to promote neural repair. Axons possess complex morphologies with stereotypical branching patterns. However, current knowledge of the axonal response to injury gives little consideration to axonal branches, nor do strategies to promote axon regeneration. This article reviews evidence from in vivo spinal cord imaging that axonal branches markedly impact the degenerative and regenerative responses to injury. At a major bifurcation point, depending on whether one or both axonal branches are injured, neurons may choose either a …