Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Medicine and Health Sciences

The Neural Mechanisms Of Speech Comprehension: Fmri Studies Of Semantic Ambiguity, Jennifer M Rodd, Matthew H Davis, Ingrid Johnsrude Aug 2005

The Neural Mechanisms Of Speech Comprehension: Fmri Studies Of Semantic Ambiguity, Jennifer M Rodd, Matthew H Davis, Ingrid Johnsrude

Brain and Mind Institute Researchers' Publications

A number of regions of the temporal and frontal lobes are known to be important for spoken language comprehension, yet we do not have a clear understanding of their functional role(s). In particular, there is considerable disagreement about which brain regions are involved in the semantic aspects of comprehension. Two functional magnetic resonance studies use the phenomenon of semantic ambiguity to identify regions within the fronto-temporal language network that subserve the semantic aspects of spoken language comprehension. Volunteers heard sentences containing ambiguous words (e.g. 'the shell was fired towards the tank') and well-matched low-ambiguity sentences (e.g. 'her secrets were written …


A Critical Role For Kalirin In Ngf Signaling Through Trka, Kausik Chakrabarti, Rong Lin, Noraisha I. Schiller, Yanping Wang, David Koubi, Ying-Xin Fan, Brian B. Rudkin, Gibbes R. Johnson, Martin R. Schiller Jun 2005

A Critical Role For Kalirin In Ngf Signaling Through Trka, Kausik Chakrabarti, Rong Lin, Noraisha I. Schiller, Yanping Wang, David Koubi, Ying-Xin Fan, Brian B. Rudkin, Gibbes R. Johnson, Martin R. Schiller

Life Sciences Faculty Research

Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low …


Learning To Like: A Role For Human Orbitofrontal Cortex In Conditioned Reward, Sylvia M L Cox, Alexandre Andrade, Ingrid Johnsrude Mar 2005

Learning To Like: A Role For Human Orbitofrontal Cortex In Conditioned Reward, Sylvia M L Cox, Alexandre Andrade, Ingrid Johnsrude

Brain and Mind Institute Researchers' Publications

A great deal of human behavior and motivation is based on the intrinsic emotional significance of rewarding or aversive events, as well as on the associations formed between such emotional events and concurrent environmental stimuli. Recent functional neuroimaging studies have implicated the ventral striatum, orbitofrontal cortex (OFC), and amygdala in the representation of reward values and/or in the anticipation of rewarding events. Here, we use functional magnetic resonance imaging to compare brain activation during the presentation of reward with that during presentation of (conditioned) stimuli that have been paired previously with reward. Specifically, we aimed to investigate conditioned reward in …


A Contralateral Preference In The Lateral Occipital Area: Sensory And Attentional Mechanisms., Matthias Niemeier, Herbert C Goltz, Anil Kuchinad, Douglas B Tweed, Tutis Vilis Mar 2005

A Contralateral Preference In The Lateral Occipital Area: Sensory And Attentional Mechanisms., Matthias Niemeier, Herbert C Goltz, Anil Kuchinad, Douglas B Tweed, Tutis Vilis

Brain and Mind Institute Researchers' Publications

Here we examined the level of the lateral occipital (LO) area within the processing stream of the ventral visual cortex. An important determinant of an area's level of processing is whether it codes visual elements on both sides of the visual field, as do higher visual areas, or prefers those in the contralateral visual field, as do early visual areas. The former would suggest that LO, on one side, combines bilateral visual elements into a whole, while the latter suggests that it codes only the parts of forms. We showed that LO has a relative preference for visual objects in …