Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Medicine and Health Sciences

Bioinformatic Analysis Predicts Microglial Dysfunction In Murine Aging, Amadu Idrisa Jalloh Mar 2023

Bioinformatic Analysis Predicts Microglial Dysfunction In Murine Aging, Amadu Idrisa Jalloh

USF Tampa Graduate Theses and Dissertations

Age-related disease is a growing concern as the global geriatric population increases. Neurodegenerative diseases scale unfavorably in prevalence with aging and inflict disastrous consequences to human health and well-being. These disorders are challenging to investigate because they arise from complex molecular origins. The neuroimmune system is a common factor among these diseases and microglia play an important role in maintaining homeostasis in the central nervous system. Aging progressively impairs microglia by decreasing their ability to adapt and respond to noxious environmental stimuli or injury. Microglial dysfunction aggravates neurodegenerative pathology when microglia are unable to regulate neuroinflammation effectively. We investigated aging …


Proteostasis & Neuroinflammation In Alzheimer's Disease, Christa C. Huber Jan 2023

Proteostasis & Neuroinflammation In Alzheimer's Disease, Christa C. Huber

Dissertations and Theses

Alzheimer’s Disease (AD) is a devastating disorder with no disease-modifying agent that stops or reverses the progression of the disease. Exosomes, 50 – 150 nanometers in diameter extracellular vesicles, play a role in intracellular communication and are currently being explored as a therapeutic agent in various diseases. In addition, exosomes possess favorable characteristics as a therapy; however, their low yield following isolation hinders their ability as a therapeutic agent. We exposed neuroprogenitor cells to heat shock (HS) before exosomes were isolated to explore the possibility of increasing exosome secretion. HS-derived exosomes exhibit significantly increased concentration and diameter compared to non-heat …


On The Roles Of Trait Anxiety And Toll Like Receptor 4 In Amphetamine Sensitization In Adolescent Male Rats, Corey A. Calhoun May 2022

On The Roles Of Trait Anxiety And Toll Like Receptor 4 In Amphetamine Sensitization In Adolescent Male Rats, Corey A. Calhoun

Graduate Doctoral Dissertations

Mammalian adolescence can be a difficult transition from childhood to adulthood, where increases in impulsivity and novelty- and risk-seeking are combined with heightened affect and elevated sensitivity to stress. Indeed, during adolescence, first drug use patterns emerge and in the continental United States, increasing misuse of amphetamines has been observed in adolescent youth. Myriad neural mechanisms underlie this shift in adolescence, including the dynamic remodeling of the mesocorticolimbic (MCL) pathway. Repeated drug administration affects neuroimmune substrates within the MCL circuit including toll-like receptor 4 (TLR4)Advances in addiction neuroscience indicate that drugs of abuse activate neural TLR4 and implicate glial TLR4 …


Impact Of Interleukin-34 On The Promotion Of Bone Osteolysis And Neuroinflammation In Experimental Models Of Alzheimer’S Disease, Anny Ho Apr 2022

Impact Of Interleukin-34 On The Promotion Of Bone Osteolysis And Neuroinflammation In Experimental Models Of Alzheimer’S Disease, Anny Ho

All HCAS Student Capstones, Theses, and Dissertations

Alzheimer’s disease (AD) is a growing health concern and is the most common type of dementia worldwide. Emerging evidence indicates that aggregated amyloid-beta (Aβ) peptides, one of the hallmark features of AD neuropathology, can increase RANKL-mediated osteoclast activity leading to the prevalence and severity of inflammatory osteolysis, e.g., osteoporosis and periodontal bone loss. Conversely, osteolytic lesions are associated with increased risk of dementia diagnosis indicating that there is a direct link between dementia and inflammatory osteolysis. It was demonstrated that the neuronal cells primarily produce interleukin-34 (IL-34) and microglia, macrophages, and osteoclast precursors express colony-stimulating factor 1 receptor (CSF-1R), a …


Immunomodulatory Roles Of The Lysosomal Sialidase Neuraminidase 1, Leigh Ellen Fremuth Apr 2022

Immunomodulatory Roles Of The Lysosomal Sialidase Neuraminidase 1, Leigh Ellen Fremuth

Theses and Dissertations (ETD)

Background Sialic acids are key sugar moieties located at the non-reducing terminals of glycan chains on glycoproteins and glycolipids. By virtue of their location, they influence the functions and biochemical properties of the macromolecules they are bound to. Removal of sialic acids in mammalian cells is carried out by four sialidases, which are differentially expressed and localized in distinct subcellular compartments. Neuraminidase 1 (NEU1), the most abundant and ubiquitous of the four sialidases, functions primarily in the acidic environment of the lysosomes, but can hydrolyze substrates at the plasma membrane, at least in certain cell types. The enzyme initiates the …


Uncovering The Role Of Apoe4 On Alzheimer’S Disease-Related Neuroinflammation, Courtney Marie Kloske Jan 2022

Uncovering The Role Of Apoe4 On Alzheimer’S Disease-Related Neuroinflammation, Courtney Marie Kloske

Theses and Dissertations--Physiology

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by two hallmark pathologies: amyloid-beta plaques (Ab plaques) and hyperphosphorylated, aggregated tau tangles. These pathologies are typically accompanied by the presence of neuroinflammation which is primarily mediated by microglia. Interestingly, several genetic risk factors that increase the risk of AD also have direct impacts on neuroinflammation. Of interest, Apolipoprotein E (ApoE) is the largest genetic risk factor for AD. ApoE has three isoforms- E4 confers an increased risk for AD, E3 is considered the “control” phenotype, and E2 is protective against AD. E4 plays a role in virtually …


Evaluating The Role Of Mmp9 In Hyperhomocysteinemia Induced Cerebrovascular Pathology, Alexandria Linton Jan 2022

Evaluating The Role Of Mmp9 In Hyperhomocysteinemia Induced Cerebrovascular Pathology, Alexandria Linton

Theses and Dissertations--Neuroscience

Vascular contributions to cognitive impairment and dementia (VCID) is one of the leading causes of dementia, along with Alzheimer’s disease (AD), and often manifests as a comorbidity of AD. Elevated plasma homocysteine, known as hyperhomocysteinemia (HHcy), is a risk factor for VCID; however, the mechanism underlying the connection between HHcy and development of VCID pathology remains elusive. Understanding this mechanism would reveal novel therapeutic targets with the potential to be disease modifying, which are a critical need for a disease that lacks any approved treatment. Previous studies from our lab have strongly associated neuroinflammation and blood brain barrier (BBB) dysregulation …


Immune Modulation As A Therapeutic Target In An Α-Synuclein Model Of Parkinson’S Disease, Meena Subhashini Subbarayan Oct 2020

Immune Modulation As A Therapeutic Target In An Α-Synuclein Model Of Parkinson’S Disease, Meena Subhashini Subbarayan

USF Tampa Graduate Theses and Dissertations

Parkinson’s disease (PD) is the second most common neurodegenerative disorder affecting about 1.5 million people in the United States with more than 60,000 people diagnosed each year. It is classically characterized by four major symptoms: tremor, postural instability, stiffness in joints, and slow movement (bradykinesia). Pathologically PD is characterized by up to 70% loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) of midbrain and accumulation of presynaptic protein called α-synuclein (α-syn) within dopaminergic neurons that extend to the striatum. This disrupts the nigrostriatal pathway leading to the motor symptoms seen in PD patients. Microglia, the innate immune cells …


Proteolysis Of Cx3cl1 Impacts Cx3cr1 Signaling And Therapeutic Benefits In A Tauopathy Model, Dylan John Finneran Nov 2018

Proteolysis Of Cx3cl1 Impacts Cx3cr1 Signaling And Therapeutic Benefits In A Tauopathy Model, Dylan John Finneran

USF Tampa Graduate Theses and Dissertations

Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder and the most common form of dementia. The hallmark pathologies of AD are extracellular aggregates of amyloid-beta, intracellular aggregates of microtubule associated protein tau and increased neuroinflammation. Current therapeutics offer only symptomatic relief and clinical trials investigating therapeutic benefits of non-steroidal anti-inflammatory drugs have yielded no positive results. Therefore, recent work has focused on immunomodulators, such as CD200 and fractalkine, as potential therapeutic targets for AD.

Fractalkine (CX3CL1; FKN) is expressed as a transmembrane protein with an N-terminal chemokine domain followed by a long, mucin-like stalk. FKN can signal as a membrane-bound …


Investigations Of Interleukin-1 Alpha As A Novel Stroke Therapy In Experimental Ischemic Stroke, Kathleen Elizabeth Salmeron Jan 2018

Investigations Of Interleukin-1 Alpha As A Novel Stroke Therapy In Experimental Ischemic Stroke, Kathleen Elizabeth Salmeron

Theses and Dissertations--Neuroscience

Stroke is a leading cause of death and disability worldwide. Although rapid recognition and prompt treatment have dropped mortality rates, most stroke survivors are left with permanent disability. Approximately 87% of all strokes result from the thromboembolic occlusion of the cerebrovasculature (ischemic strokes). Potential stroke therapeutics have included anti-inflammatory drugs, as well as many other targets with the goal of mitigating the acute and chronic inflammatory responses typically seen in an ischemic stroke. While these approaches have had great success in preclinical studies, their clinical translation has been less successful. Master inflammatory cytokines, such as IL-1, are of particular interest. …


Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers Mar 2017

Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers

USF Tampa Graduate Theses and Dissertations

The last century has seen a steady increase in the extension of the average lifespan. This has concomitantly produced higher incidences of age-related chronic degenerative diseases like Alzheimer’s and Parkinson’s diseases. Age is the single greatest risk factor for the development of not just these degenerative conditions but cancer as well. The aged niche undergoes a number of maladaptive changes that allow underlying conditions to present and progress. Exactly which changes, contribute to the progression of which disease is currently an area of intense study. However, these answers often present therapeutic targets for disease prevention. Age is characterized by a …


Neuroinflammation In Alzheimer's Disease And Vascular Cognitive Impairment, Erica M. Weekman Jan 2017

Neuroinflammation In Alzheimer's Disease And Vascular Cognitive Impairment, Erica M. Weekman

Theses and Dissertations--Physiology

It was once believed that the brain was immunologically privileged with no resident or infiltrating immune cells; however, now it is understood that the cells of the brain are capable of a wide range of inflammatory processes and phenotypes. Inflammation in the brain has been implicated in several disease processes such as Alzheimer’s disease (AD) and vascular cognitive impairment and dementia (VCID); however, the role of inflammation in these two dementias is poorly understood.

When we stimulated a pro-inflammatory phenotype with an adeno-associated viral vector in a transgenic mouse model of AD that develops Aβ plaques, we saw a pro-inflammatory …


Analyzing A-Series Gangliosides In Neurons Following Exposure To Glutamate, Dae Hee Park Aug 2015

Analyzing A-Series Gangliosides In Neurons Following Exposure To Glutamate, Dae Hee Park

Electronic Thesis and Dissertation Repository

Neurons within different brain regions have varying levels of vulnerability to external stress and therefore respond differently to injury. A potential reason to explain this may lie within a key lipid class of the cell’s plasma membrane called gangliosides. These glycosphingolipid species have been shown to play various roles in the maintenance of neuronal viability. The purpose of this study is to use electrospray ionization mass spectrometry (ESI-MS) technique and immunohistochemistry to evaluate the temporal changes in the expression profiles of various ganglioside species during the course of neurodegeneration in rat primary cortical neurons exposed to glutamate toxicity. Primary embryonic …


Mechanisms Of Seizure During Pregnancy And Preeclampsia, Abbie Chapman Johnson Jan 2015

Mechanisms Of Seizure During Pregnancy And Preeclampsia, Abbie Chapman Johnson

Graduate College Dissertations and Theses

Eclampsia is defined as de novo seizure in a woman with the hypertensive complication of pregnancy known as preeclampsia (PE), and is a leading cause of maternal and fetal morbidity and mortality worldwide. The pathogenesis of eclamptic seizure remains unknown, but is considered a form of hypertensive encephalopathy where an acute rise in blood pressure causes loss of cerebral blood flow (CBF) autoregulation and hyperperfusion of the brain that results in vasogenic edema formation and subsequent seizure. However, eclamptic seizure can occur during seemingly uncomplicated pregnancies, in the absence of hypertension and PE, suggesting that normal pregnancy may predispose the …


The Effect Of Acute Lps-Induced Immune Activation And Brain Insulin Signaling Disruption In A Diabetic Model Of Alzheimer's Disease, Andrew Scott Murtishaw Aug 2014

The Effect Of Acute Lps-Induced Immune Activation And Brain Insulin Signaling Disruption In A Diabetic Model Of Alzheimer's Disease, Andrew Scott Murtishaw

UNLV Theses, Dissertations, Professional Papers, and Capstones

Alzheimer's disease (AD) is a neurodegenerative disorder marked by progressive cognitive impairments and pathological hallmarks that include amyloid plaques, neurofibrillary tangles, and neuronal loss. Several well-known mutations exist that lead to early-onset familial AD (fAD). However, these cases only account for a small percentage of total AD cases. The vast majority of AD cases are sporadic in origin (sAD) and are less clearly influenced by a single mutation but rather some combination of genetic and environmental risk.

The etiology of sAD remains unclear but numerous risk factors have been identified that increase the chance of developing AD. Among these risk …


Implications Of Human Umbilical Cord Blood Cells: An Immunotherapeutic Strategy For Alzheimer's Disease, Donna Darlington May 2014

Implications Of Human Umbilical Cord Blood Cells: An Immunotherapeutic Strategy For Alzheimer's Disease, Donna Darlington

USF Tampa Graduate Theses and Dissertations

ABSTRACT

Alzheimer's disease (AD) is the most common progressive age related dementia and the fourth major cause of mortality in the elderly in the United States. AD is pathologically characterized by deposition of amyloid beta (Aβ) plaques in the brain parenchyma and neurofibrillary tangles (NFTs) within the neuronal soma. While pharmacological targets have been discovered, current strategies for the symptomatic or disease-modifying treatment of AD do not significantly slow or halt the underlying pathological progression of the disease. Consequently, more effective treatment is needed. One possibility for amelioration is using human umbilical cord blood cell (HUCBC) therapy. HUCBCs comprise a …


Microglia Activation In A Rodent Model Of An Alcohol Use Disorder: The Importance Of Phenotype, Initiation, And Duration Of Activation, Simon A. Marshall Jan 2013

Microglia Activation In A Rodent Model Of An Alcohol Use Disorder: The Importance Of Phenotype, Initiation, And Duration Of Activation, Simon A. Marshall

Theses and Dissertations--Pharmacy

Chronic ethanol exposure results in neuroadaptations that drive the progression of an alcohol use disorder (AUD). One such driving force is alcohol-induced neurodegeneration. Neuroinflammation has been proposed as a mechanism underlying this damage. Although neuroinflammation is a physiological response to damage, overactivation of its pathways can lead to neurodegeneration. A hallmark indicator of neuroinflammation is microglial activation, but microglial activation is a heterogeneous continuum of phenotypes that can promote or inhibit neuroinflammation. Furthermore acute microglial activation is necessary to restore homeostasis, but prolonged activation can exacerbate damage. The diversity of microglia makes both the level and timecourse of activation vital …


Fluid Percussion Injury In The Rat As An Animal Model Of Concussion: Cumulative Effects Of Repeated Concussion And Its Treatment By Anti-Cd11d Antibody, Sandy Rc Shultz Apr 2011

Fluid Percussion Injury In The Rat As An Animal Model Of Concussion: Cumulative Effects Of Repeated Concussion And Its Treatment By Anti-Cd11d Antibody, Sandy Rc Shultz

Electronic Thesis and Dissertation Repository

Traumatic brain injury is a global health concern with limited treatment options currently available. Concussion is the most common form of traumatic brain injury, and although a single concussion rarely results in long-term neurological dysfunction, repeated concussion can result in cumulative damage and chronic neurodegenerative disease. However, little is known about the factors and mechanisms of concussion involved in these detrimental effects. Animal models provide a means to examine the factors and mechanisms involved in traumatic brain injury, as well as potential treatments, in experiments that cannot be conducted using human participants. In the present thesis a fluid percussion model …


H5n1 Influenza Virus Induces A Parkinsonian Pathology, Haeman Jang May 2010

H5n1 Influenza Virus Induces A Parkinsonian Pathology, Haeman Jang

Theses and Dissertations (ETD)

The greatest threat for an influenza pandemic at this time is posed by the highly pathogenic H5N1 avian influenza virus. To date, 63% of the 436 known human cases of H5N1 infection have proven fatal. Animals infected by H5N1 viruses have demonstrated acute neurological signs ranging from mild encephalitis to motor disturbances and coma. However, no studies have examined the longer-term neurologic consequences of H5N1 infection. We show that this virus travels from the peripheral nervous system into the central nervous system (CNS) to higher levels of the neuroaxis, using C57BL/6J mice that are infected by the A/VN/1203/04 H5N1 virus …