Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Neurosciences

Journal Articles: Pharmacology & Experimental Neuroscience

Series

Female

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Medicine and Health Sciences

Ecdysoneless Overexpression Drives Mammary Tumorigenesis Through Upregulation Of C-Myc And Glucose Metabolism, Bhopal C. Mohapatra, Sameer Mirza, Aditya Bele, Channabasavaiah B. Gurumurthy, Mohsin Raza, Irfana Saleem, Matthew D. Storck, Aniruddha Sarkar, Sai Sundeep Kollala, Surendra K. Shukla, Siddesh Southekal, Kay-Uwe Wagner, Fang Qiu, Subodh M. Lele, Mansour A. Alsaleem, Emad A. Rakha, Chittibabu Guda, Pankaj K. Singh, Robert D. Cardiff, Hamid Band, Vimla Band Jan 2022

Ecdysoneless Overexpression Drives Mammary Tumorigenesis Through Upregulation Of C-Myc And Glucose Metabolism, Bhopal C. Mohapatra, Sameer Mirza, Aditya Bele, Channabasavaiah B. Gurumurthy, Mohsin Raza, Irfana Saleem, Matthew D. Storck, Aniruddha Sarkar, Sai Sundeep Kollala, Surendra K. Shukla, Siddesh Southekal, Kay-Uwe Wagner, Fang Qiu, Subodh M. Lele, Mansour A. Alsaleem, Emad A. Rakha, Chittibabu Guda, Pankaj K. Singh, Robert D. Cardiff, Hamid Band, Vimla Band

Journal Articles: Pharmacology & Experimental Neuroscience

Ecdysoneless (ECD) protein is essential for embryogenesis, cell-cycle progression, and cellular stress mitigation with an emerging role in mRNA biogenesis. We have previously shown that ECD protein as well as its mRNA are overexpressed in breast cancer and ECD overexpression predicts shorter survival in patients with breast cancer. However, the genetic evidence for an oncogenic role of ECD has not been established. Here, we generated transgenic mice with mammary epithelium-targeted overexpression of an inducible human ECD transgene (ECDTg). Significantly, ECDTg mice develop mammary hyperplasia, preneoplastic lesions, and heterogeneous tumors with occasional lung metastasis. ECDTg tumors exhibit epithelial to mesenchymal transition …


Properties Of Ribbon And Non-Ribbon Release From Rod Photoreceptors Revealed By Visualizing Individual Synaptic Vesicles., Minghui Chen, Matthew J. Van Hook, David Zenisek, Wallace B. Thoreson Jan 2013

Properties Of Ribbon And Non-Ribbon Release From Rod Photoreceptors Revealed By Visualizing Individual Synaptic Vesicles., Minghui Chen, Matthew J. Van Hook, David Zenisek, Wallace B. Thoreson

Journal Articles: Pharmacology & Experimental Neuroscience

Vesicle release from rod photoreceptors is regulated by Ca(2+) entry through L-type channels located near synaptic ribbons. We characterized sites and kinetics of vesicle release in salamander rods by using total internal reflection fluorescence microscopy to visualize fusion of individual synaptic vesicles. A small number of vesicles were loaded by brief incubation with FM1-43 or a dextran-conjugated, pH-sensitive form of rhodamine, pHrodo. Labeled organelles matched the diffraction-limited size of fluorescent microspheres and disappeared rapidly during stimulation. Consistent with fusion, depolarization-evoked vesicle disappearance paralleled electrophysiological release kinetics and was blocked by inhibiting Ca(2+) influx. Rods maintained tonic release at resting membrane …